

ISSN (PRINT): 2393-8374,(ONLINE):2394-0697, VOLUME-1, ISSUE-2, 2014

21

IMPLEMENTATION OF A PROPOSED 2D DOA ESTIMATION
ALGORITHM ON AN FPGA PLATFORM

1Sachin Khedekar, 2Rachna Kumari, 3Sitakanta Maharatha, 4Dr. Mainak Mukhopadhyay

1,2,3Research Scholars,Birla Institute of Technology Mesra Deogarh Campus, Jharkhand, India

HOD, ECE Dept., Research Scholars,Birla Institute of Technology Mesra Deogarh Campus,
Jharkhand, India

1Sac_khedekar@rediffmail.com

Abstract— Direction of arrival estimation is
an important signal parameter in smart
antenna which can be used for source
localization or source tracking by
determining the desired signal location. A
new type of estimation algorithm is proposed
for the 2-D azimuth and elevation angle
estimation problem. FPGA implementation
of algorithm can be done using HDL coder of
MATLAB.

Index Terms— DOA, GPS, FPGA

I. OVERVIEW OF DOA ESTIMATION

ALGORITHMS

Smart antenna is one of the dynamic research
areas in wireless communication systems. The
demand for smart antenna increases drastically
when dealing with multiuser communication
system, which needs to be adaptive, especially
in time varying scenarios. Direction of Arrival
(DOA) estimation is considered as an important
task in smart antennas. It is an important signal
parameter which can be used for source
localization or source tracking by determining
the desired signal location.
Also, it plays a key role in enhancing the
performance of adaptive antenna arrays for
wireless communication system and other
numerous applications in the field of radar and
sonar. Therefore, research has been
accomplished about DOA estimation during last
recent decades. Various DOA estimation
methods have been proposed. These methods
differ in technique, speed, computational

complexity, accuracy and their dependency on
the array structure. Different methods have been
suggested to enhance the performance of
available algorithms including the increase in
the accuracy and resolution of DOA estimation
algorithms.
According to the underlying methodology, the
array signal processing algorithms can be
categorized into two classes. The first class is
called the non-parametric approach in which the
source locations (or the DOA) are estimated by
choosing the strongest output power of a spatial
filter after sweeping over the space of interest.
The advantage of this approach is that no
assumption has to be made on the studied
signal. The second class is called the parametric
approach, in which a nominated model is
assumed for the array observations. Once the
model is determined, the quantities of interest in
the array problem can be determined by
choosing the best parameters that fit the model
under some optimality criteria.
In general, the direction-of-arrival (DOA)
estimation techniques can be broadly classified
into conventional beamforming techniques,
subspace-based techniques, and maximum
likelihood techniques.

A. Classical beamforming

The conventional beamformer works described
earlier on the premise that pointing the strongest
beam in a particular direction yields the peak
power arriving in that direction. In other words,
all the degrees of freedom available to the array
were used in forming a beam in the required
look direction. This works well when there is

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

ISSN (PRINT): 2393-8374,(ONLINE):2394-0697, VOLUME-1, ISSUE-2, 2014

22

only one incoming signal present. Two peaks
can be seen at 100 and 300, but the 300 peak is
not obvious and are somewhat averaged with
the peak at 100. In other words, the spread of
each peak is large, and if two impinging angles
are close to each other, the two peaks may be
“blurred” into one pair. In a more general term,
although it is simple to implement, the width of
the beam associated with a peak and the height
of the side lobes, as seen in figure are relatively
large; they limit the method’s effectiveness
when signals arriving from multiple directions
and/or sources are present. This

-100 -80 -60 -40 -20 0 20 40

60 80 100

Angle in degree

Fig 1: DOA estimation with Classical

Beamformer

technique has poor resolution. Although it is
possible to increase the resolution by adding
more array elements, it leads to the increase in
the numbers of receivers and the amount of
storage required for the data.

B. Capon’s Beamformer:

The conventional beamformer works well when
there is only one incoming signal present. But
when there is more than one signal present, the
array output power contains signal contributions
from the desired angle as well as from the
undesired angles. Capon’s method overcomes
this problem by using the degrees of freedom to
form a beam in the look direction and at the
same time the nulls in other directions in order
to reject other signals. In terms of the array
output power, forming nulls in the directions
from which other signals arrive can be
accomplished by constraining a beam (or at
least maintaining unity gain) in the look

direction. Thus, for a particular look direction,
Capon’s method uses all but one of the degrees
of the freedom to minimize the array output
power while using the remaining degrees of
freedom to constrain the gain in the look
direction to be unity and at the same time the
nulls in other directions in order to reject other
signals. In terms of the array output power,
forming nulls in the directions from which other
signals arrive can be accomplished by
constraining a beam (or at least maintaining
unity gain) in the look direction. Thus, for a
particular look direction, Capon’s method uses
all but one of the degrees of the freedom to
minimize the array output power while using
the remaining degrees of freedom to constrain
the gain in the look direction to be unity. It can
be seen that in comparison with figure, the
peaks at 10° and 30° are much sharper and
better separated compared to that of the
conventional beamformer. The side peaks or
lobes at other angles are also reduced, making
them less likely to confuse the interpretation of
the output power. The best resolution achieved
was 10°. However, this increased resolution
comes at the cost of increased computing time
or power.

-100 -80 -60 -40 -20 0

20 40 60 80 100

Angle in degree

Fig 2: DOA estimation with Capon’s

Beamformer

C. Maximum Likelihood Techniques

Maximum likelihood (ML) techniques were
some of the first techniques investigated for
DOA estimation. Since ML techniques were
computationally intensive, they are less.

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

ISSN (PRINT): 2393-8374,(ONLINE):2394-0697, VOLUME-1, ISSUE-2, 2014

23

-100 -80 -60 -40 -20 0 20 40

60 80 100

Angle in degree

Fig. 3: DOA estimation with the linear

prediction; the signal impinges at 10° and 300

popular than other techniques. However, in
terms of performance, they are superior to other
estimators, especially at low SNR

D. MUSIC

MUSIC (Multiple Signal Classification) is one
of the earliest proposed and a very popular
method for super-resolution direction finding.
The DOAs of the multiple incident signals can
be estimated by locating the peaks. The d
largest peaks in the MUSIC spectrum above
correspond to the DOAs of the signals
impinging on the array.

-100 -
80 -60 -40 -20 0 20
40 60 80 100

Angle in degree

Fig. 4: DOA estimation with MUSIC; the radio

signals impinges at 10°, 20°, and 40°.

E. ESPRIT

100 -80 -60 -40 -20 0 20

40 60 80 100

Angle in degree

Fig 5: DOA estimation with MUSIC; the radio

signals impinges at 10°, 20°, and 40°.

Due to its simplicity and high resolution
capability, ESPRIT has become one of the most
popular signals subspace-based DOA estimating
schemes. ESPRIT is applicable to array
geometries that are composed of two identical
sub arrays and is restricted to use with array
geometries that exhibit invariances. This
requirement, however, is not very prohibitive in
practical applications since many of the
common array geometries used in practice
exhibit these invariances. There are three
primary steps in any ESPRIT based DOA
estimation algorithm:
1. Signal subspace estimation: Computation of a
basis matrix for the estimated signal subspace.
2. Solution of the invariance equation: Solution
of an (in general) over determined system of
equations, the invariance equation, derived from
the basis matrix.
3. DOA estimation: Computation of the
eigenvalues of the solution of the invariance
equation formed in step 2.

II. PROPOSED METHOD OF DIRECTION

OF ARRIVAL ESTIMATION BY

ROTATING ADAPTIVE ARRAY

ANTENNA PLANE MECHANICALLY

A new technique for 2 D DOA estimation of
signals impinging on the array, using
mechanical rotation of the array plane by small
angle (Azimuth & Elevation) has been proposed
for further analysis and discussion.

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

ISSN (PRINT): 2393-8374,(ONLINE):2394-0697, VOLUME-1, ISSUE-2, 2014

24

For an adaptive antenna system, if p users
transmit signals from different locations, and
each user's signal arrives at the array through
multiple paths.
Let LMi denote the number of multipath

components of i-th user. We have
1

p

i

i

LM p

 .

Let's further assume that all of the multi path
components for a particular user arrive within a
time window which is much less than the
channel symbol period for that user, then the
input data vector could be expressed as-

, ,

1 1

(t) () (t) (t)
Mip L

i k i k i

i k

x a s n

(1)

Or we can write
1

(t) () n(t)
p

i i

i

x G s t

(2)

where θ
i;k

is the DOA of the k-th multi path

component for the i-th user, a(θ
i;k

) is the

steering vector corresponding to θ
i;k

, α
i;k

is the

complex amplitude of the k-th multipath
component for the i-th user, and G

i
is the spatial

signature for the i-th user and is given by

1

i , i,kG ()
M

k

L i
i ka

(3)
The signal component arriving on nth antenna
element at a particular instance of time is given
by

exp(j2 ndsin cos /)nX A
(4)

exp(j2 ndsin sin /)nY A
(5)

Where A= complex amplitude of the signal, φ =
Direction of Arrival (DOA) of the signal
(Azimuth Angle) (unknown), θ = Direction of
Arrival (DOA) of the signal (Elevation Angle)
(unknown), d= spacing between antenna
elements and λ = wavelength.
Now one can view (4) & (5) as-

exp[j2 (dsin cos / c)]nX A f
(6)

exp[j2 (dsin sin / c)]nY A f
(7)

Where f= frequency of the signal and c=
velocity of wave.
Now if we mechanically steer the antenna plane
by δφ & δθ, then (6) & (7) becomes –

1 exp[j2 (dsin cos() / c)]nX A f
(8)

1 exp[j2 (dsin sin() / c)]nY A f
(9)

2 exp[j2 (dsin()cos / c)]nX A f
(10)

2 exp[j2 (dsin()sin / c)]nY A f
(11)
Now taking the frequencies (which can be
known by seeing the spectra of the signal) of
the signal from (6) and (8), and taking their
ratio one could get-

 1

cos 1

cos()

n

n

frequency X

frequency X k

(k

is known)

Hence 1 cos
tan []

sin

k

(12)
And from (7) & (11), we could get

2

sin 1

sin()

n

n

frequency Y

frequency Y k

1 sin
cot []

cos

k

 (13)
Now using the simple relation given in (12) &
(13) one can determine the unknown DOA (θ &
φ) of all incoming signal impinging on the array
with suitable algorithm based on (6), (7), (8),
(9), (10), (11), (12) and (13).

III. FPGA IMPLEMENTATION PROCEDURE

Basically, an FPGA is a large-scale integrated
circuit containing programmable logic blocks,
programmable interconnect and programmable
input-output blocks. The programmable logic
blocks can be programmed to duplicate the
functionality of basic logic gates such as AND,
OR, XOR, NOT or more complex
combinatorial functions such as flip-flops,
memory elements, decoders or simple
mathematical functions. The programmable
input-output blocks at the periphery of the
devices provide programmable input and output
capabilities. By programming the hierarchy of
programmable interconnects, the programmable
logic blocks and programmable input-output
blocks can be interconnected to perform

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

ISSN (PRINT): 2393-8374,(ONLINE):2394-0697, VOLUME-1, ISSUE-2, 2014

25

whatever logical functions and input-output
connections are required. During the past
decade, FPGAs have experienced extensive
architecture innovations. Many advanced
technologies have been applied to FPGA
devices that enable the development of higher
density and much more powerful devices. Now
most FPGA devices also have block RAMs,
hardware multipliers and embedded
microprocessors besides traditional logic blocks
and interconnects. Therefore FPGA devices
become extremely well suited to the high-
performance real-time signal processing.
Defining the behavior of an FPGA chip can be
done using a Hardware Description Language
(HDL) such as VHDL and Verilog to describe
the functions directly. The handwritten code can
be guaranteed as optimal by the designer in the
sense that one can be sure what is got as an
output. However, the optimality of the design is
highly related to the experience of the designer
which makes the HDL design method difficult
for inexperienced designers. Alternatively,
defining the behavior of an FPGA can be done
using a schematic based design tool, such as the
System Generator we mentioned above. The
System Generator provides blocks of pre-
defined functions, which can be arranged
through a graphical user interface. Therefore,
the System Generator is easy for designers,
especially for persons unexperienced with HDL
design method. After defining the behavior
using either the HDL method or the schematic
method, a technology-mapped net list is
generated using an electronic design automation
tool. The net list can then be fitted to the actual
FPGA architecture using a process called place
and route, usually performed by the FPGA
Company’s proprietary place-and-route
software. The user will validate the map, place
and route results via timing analysis, simulation,
and other verification methodologies. Once the
design and validation process is complete, the
binary file can be generated (also using the
FPGA company’s proprietary software) and
downloaded to (re)configure the FPGA device.
To simplify the design of complex systems in
FPGAs, there exist libraries of predefined
complex functions and circuits that have been
tested and optimized to speed up the design
process. These predefined circuits are
commonly called IP cores, such as the CORDIC
cores and are available from FPGA vendors and

third-party IP suppliers. The FPGA device
vendors also provide related software to support
their chips, such as the Xilinx Integrated
Software Environment (ISE). With assistance of
these software tools and IP cores, FPGA design
is simpler now.

A. MATLAB to FPGA using HDL Coder (TM):

FPGAs provide a good compromise between
general purpose processors (GPPs) and
application specific integrated circuits (ASICs).
GPPs are fully programmable but are less
efficient in terms of power and performance;
ASICs implement dedicated functionality and
show the best power and performance
characteristics, but require extremely expensive
design validation and implementation cycles.
FPGAs are also used for prototyping in ASIC
workflows for hardware verification and early
software development.
Due to the order of magnitude performance
improvement when running high-throughput,
high-performance applications, algorithm
designers are increasingly using FPGAs to
prototype and validate their innovations instead
of using traditional processors. However, many
of the algorithms are implemented in MATLAB
due to the simple-to-use programming model
and rich analysis and visualization capabilities.
When targeting FPGAs or ASICs, these
MATLAB algorithms have to be manually
translated to HDL.
For many algorithm developers who are well-
versed with software programming paradigms,
mastering the FPGA design workflow is a
challenge. Unlike software algorithm
development, hardware development requires
them to think parallel. Other obstacles include:
learning the VHDL or Verilog language,
mastering IDEs from FPGA vendors, and
understanding esoteric terms like "multi-cycle
path" and "delay balancing".
We will see how we can automatically generate
HDL code from MATLAB algorithm,
implement the HDL code on an FPGA, and use
MATLAB to verify HDL code.

B. MATLAB to Hardware Workflow

The process of translating MATLAB designs to
hardware consists of the following steps:
-Model algorithm in MATLAB - use MATLAB
to simulate, debug, and iteratively test and
optimize the design.

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

ISSN (PRINT): 2393-8374,(ONLINE):2394-0697, VOLUME-1, ISSUE-2, 2014

26

-Generate HDL code - automatically create
HDL code for FPGA prototyping.
-Verify HDL code - reuse our MATLAB test
bench to verify the generated HDL code.
-Create and verify FPGA prototype - implement
and verify design on FPGAs. There are some
unique challenges in translating MATLAB to
hardware. MATLAB code is procedural and can
be highly abstract; it can use floating-point data
and has no notion of time. Complex loops can
be inferred from matrix operations and toolbox
functions. Implementing MATLAB code in
hardware involves:
-Converting floating-point MATLAB code to
fixed-point MATLAB code with optimized bit
widths suitable for efficient hardware
generation.
-Identifying and mapping procedural constructs
to concurrent area- and speed-optimized
hardware operations.
-Introducing the concept of time by adding
clocks and clock rates to schedule the
operations in hardware.
-Creating resource-shared architectures to
implement expensive operators like multipliers
and for-loop bodies.
-Mapping large persistent arrays to block RAM
in hardware
HDL Coder™ simplifies the above tasks though
workflow automation.
Let's look at each workflow step in detail.

1) Fixed-Point Conversion
Signal processing applications are typically
implemented using floating-point operations in
MATLAB. However, for power, cost, and
performance reasons, these algorithms need to
be converted to use fixed-point operations when
targeting hardware. Fixed-point conversion can
be very challenging and time-consuming,
typically demanding 25 to 50 percent of the
total design and implementation time. The
automatic floating-point to fixed-point
conversion workflow in HDL Coder™ can
greatly simplify and accelerate this conversion
process. The floating-point to fixed-point
conversion workflow consists of the following
steps:
-Verify that the floating-point design is
compatible with code generation.
-Propose fixed-point types based on computed
ranges, either through the simulation of the
testbench or through static analysis that

propagates design ranges to compute derived
ranges for all the variables.
-Generate fixed-point MATLAB code by
applying proposed fixed-point types.
-Verify the generated fixed-point code and
compare the numerical accuracy of the
generated fixed-point code with the original
floating point code. Note that this step is
optional. We can skip this step if MATLAB
design is already implemented in fixed-point.

2) HDL Code Generation
The HDL Code Generation step generates HDL
code from the fixed-point MATLAB code. We
can generate either VHDL or Verilog code that
implements MATLAB design. In addition to
generating synthesizable HDL code, HDL
Coder™ also generates various reports,
including a traceability report that helps we
navigate between MATLAB code and the
generated HDL code, and a resource utilization
report that shows, at the algorithm level,
approximately what hardware resources are
needed to implement the design, in terms of
adders, multipliers, and RAMs. During code
generation, we can specify various optimization
options to explore the design space without
having to modify our algorithm. In the Design
Space Exploration and Optimization Options
section below, we can see how we can modify
code generation options and optimize your
design for speed or area.

3) HDL Verification
Standalone HDL test bench generation:
HDL Coder™ generates VHDL and Verilog
test benches from MATLAB scripts for rapid
verification of generated HDL code. We can
customize an HDL test bench using a variety of
options that apply stimuli to the HDL code. We
can also generate script files to automate the
process of compiling and simulating your code
in HDL simulators. These steps help to ensure
the results of MATLAB simulation match the
results of HDL simulation. HDL Coder™ also
works with HDL Verifier to automatically
generate two types of cosimulation testbenches:
-HDL cosimulation-based verification works
with Mentor Graphics® ModelSim® and
QuestaSim®, where MATLAB and HDL
simulation happen in lockstep.
-FPGA-in-the-Loop simulation allows running a
MATLAB simulation with an FPGA board in

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

ISSN (PRINT): 2393-8374,(ONLINE):2394-0697, VOLUME-1, ISSUE-2, 2014

27

strict synchronization. We can use MATLAB to
feed real world data into our design on the
FPGA, and ensure that the algorithm will
behave as expected when implemented in
hardware.

4) HDL Synthesis
Apart from the language-related challenges,
programming for FPGAs requires the use of
complex EDA tools. Generating a bit stream
from the HDL design and programming the
FPGA can be daunting tasks. HDL Coder™
provides automation here, by creating project
files for Xilinx® and Altera® that are
configured with the generated HDL code. We
can use the workflow steps to synthesize the
HDL code within the MATLAB environment,
see the results of synthesis, and iterate on the
MATLAB design to improve synthesis results.

a) Design Space Exploration and
Optimization Options
HDL Coder™ provides the following
optimizations to help we explore the design
space trade-offs between area and speed. We
can use these options to explore various
architectures and trade-offs without having to
manually rewrite our algorithm.

b) Speed Optimizations
Pipelining: To improve the design's clock
frequency, HDL Coder enables us to insert
pipeline registers in various locations within our
design. For example, we can insert registers at
the design inputs and outputs, and also at the
output of a given MATLAB variable in our
algorithm.
Distributed Pipelining: HDL Coder also
provides an optimization based on retiming to
automatically move pipeline registers, we have
inserted to maximize clock frequency, by
minimizing the delay through combinational
paths in our design.
Area Optimizations:
RAM mapping: HDL Coder™ maps matrices to
wires or registers in hardware. If persistent
matrix variables are mapped to registers, they
can take up a large amount of FPGA area. HDL
Coder™ automatically maps persistent matrices
to block RAM to improve area efficiency. The
challenge in mapping MATLAB matrices to
block RAM is that block RAM in hardware
typically has a limited set of read and writes
ports. HDL Coder™ solves this problem by

automatically partitioning and scheduling the
matrix reads and writes to honor the block
RAM's port constraints, while still honoring the
other control- and data-dependencies in the
design.
Resource sharing: This optimization identifies
functionally equivalent multiplier operations in
MATLAB code and shares them. We can
control the amount of multiplier sharing in the
design.
Loop streaming: A MATLAB for-loop creates a
FOR_GENERATE loop in VHDL. The body of
the loop is replicated as many times in hardware
as the number of loop iterations. This results in
an inefficient use of area. The loop streaming
optimization creates a single hardware instance
of the loop body that is time-multiplexed across
loop iterations.
Constant multiplier optimization: This design
level optimization converts constant multipliers
into shift and add operations using canonical
signed digit (CSD) techniques.

IV. SIMULATIONS

A. Actual & estimated signals DOA and
frequencies

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

ISSN (PRINT): 2393-8374,(ONLINE):2394-0697, VOLUME-1, ISSUE-2, 2014

28

Fig.6-9: Estimated & Actual signals DOA and

frequencies

B. HDL Resource Utilization Report

In these simulations δφ = 1
0
. Estimated

Frequencies and Estimated DOAs are not with
the same order as signals are sensed by the
array, but after estimating the entire signal
space, their plots almost identical as exhibited
in fig. (6) to (9).

CONCLUSIONS

FPGA implementation of a proposed 2D DOA
estimation algorithm is presented on MATLAB
platform. The design employs CORDIC-based
processing (array boundary cell) which is well
matched to the computational resources of an
FPGA. This work points out that spatial
processing techniques provide new perspectives
in applications related with GPS. The use of 2 D
DOA algorithm leads to good solutions where

the interfering and multipath signals need to be
canceled. Others scenarios, that made a better
representation of GPS problem will be
established in order to test the structure. Future
studies will work on in the way of have DOA
estimators with lower computational burden
with 3 dimensional geometry. Also the System
Generator programming environment enables
the rapid development of heterogeneous
systems (processors and FPGAs) while
insulating programmers from the frequently
complex and error prone programming
associated with hardware software partitions.
The results indicate successful real time
implementation of the proposed and the existing
methods.

REFERENCES

[1] Parkinson, B. W., Spilker, J., Global

Positioning System: Theory and
Applications, vol. 1&2, AIAA, 1996.

[2] Zhizhang Chen, Gopal Gokeda, Yiqiang Yu,
Introduction to Direction of Arrival
Estimation, Artech House pub.

[3] Kaplan, E. D., Understanding GPS
Principles and Application, Arthech House,
1996.

[4] Compton, R. T., Adaptive Antennas:
Concepts and Performance”, Prentice Hall,
Englewood Cliffs, NJ, 1988.

[5] Junqueira, C., Ribeiro, M., Romano, J.M.T.
Adaptive Techniques for GPS Systems
Enhancement, 13Th International Technical
Meeting of The Satellite Division of the
Institute of Navigation set. 2000.

[6] Balanis, Antenna Theory: Analysis &
design, Wiley publication

[7] T. K. Sarkar, M. C. Wicks, M. Salazar-
Palma, R. J. Bonneu, Smart Antennas, John
Wiley & Sons.

[8] Harry L. Van Trees, Optimum Array
Processing, John Wiley & Sons.

[9] B. Widrow, P.E. Mantey, L. J. Griffiths, B.
B. Goode, Adaptive Antenna Systems, IEEE
Proc. Vol. 55, No.12, pp. 2143 – 2159,
December 1967.

[10] Zhang, Y., Z. Ye, X. Xu, and J. Cui,
“Estimation of two-dimensional direction-
of-arrival for uncorrelated and coherent
signals with low complexity”, IET Radar,
Sonar & Navigation, Vol. 4, No. 4, 507-509,
2010.

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

ISSN (PRINT): 2393-8374,(ONLINE):2394-0697, VOLUME-1, ISSUE-2, 2014

29

[11] Ichige, K. and H. Arai, “Implementation
of FPGA based fast DOA estimator using
unitary MUSIC algorithm [cellular wireless
base station applications]," IEEE 58th
Vehicular Technology Conference,
VTC2003-Fall, Vol. 1, 213-217, 2003.

[12] Ichige, K. and H. Arai, “Real-time smart
antenna system incorporating FPGA-based
fast DOA estimator," IEEE 60th Vehicular
Technology Conference, VTC2004-Fall,
Vol. 1, 160-164, 2004.

[13] Wang, H. and M. Glesner, “Hardware
implementation of smart antenna systems,"
Adv. Radio Sci., Vol. 4, 185-188, 2006.

[14] www.mathworks.com

S. R. Khedekar - He is a
research scholar in Birla Institute
of Technology, Mesra (Deogarh
campus), Jharkhand, INDIA. He
received bachelor in Electronics

& Telecommunication engineering in 2000
from NMU &master in Electronics &
Telecommunication engineering in 2008 from
Shivaji University, Maharashtra. He has more
than 11 years of teaching experience. His area
of research is signal processing & antenna wave
theory.

Sitakanta Maharatha - He is a
research scholar in Birla Institute
of Technology, Mesra (Deogarh
campus), Jharkhand, INDIA. He
received bachelor in engineering
from Utkal University& M.Tech.

from KIIT University, Odisha. He has more
than 18 years of teaching experience. His area
of research is signal processing & VLSI.

Rachna Kumari - She is a
research scholar in Birla Institute
of Technology, Mesra (Deogarh
campus), Jharkhand, INDIA. She
received M.Tech from Dr.
B.C.Roy Engineering College,

Durgapur, WB. She has more than 7 years of
teaching experience. Her area of interest
isccommunication system, data communication,
advance electric circuit, switching &pulse
theory, computer network, digital
communication, basic electronics,
telecommunication and switching networks

Dr. Mainak Mukhopadhyay –
He is working as Head of ECE
department in Birla Institute of
Technology, Mesra (Deogarh
campus), Jharkhand, INDIA.He

received PhD in E&ECE from, IIT Kharagpur,
M.Tech. in Microwave Engineering from
University of Burdwan. He has total teaching,
R&D and industrial experience of 11 years. His
specialization & areas of interest are digital
processing architecture, microwave
communication, embedded system & VLSI,
control engineering & genetic algorithm.

