

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-11, ISSUE-2, 2024

15

SHADOW DOM ATTACKS AND PREVENTION METHODS –

 A REVIEW
Dr. N. Alamelu Mangai

Assistant Professor,
Department of Information Technology,

Kongunadu Arts and Science College, Coimbatore, Tamilnadu, India.
Email: alamelumangai.n@gmail.com

ABSTRACT
Shadow DOM attacks refer to security
vulnerabilities that can occur when using the
Shadow DOM (Document Object Model)
feature in web development. The Shadow
DOM allows developers to encapsulate their
HTML, CSS, and JavaScript, making it
more difficult for external code to interfere
with or modify the components within it.
This paper dwells upon the potential attack
vectors that can be exploited if not properly
secured.
Keywords: Web Development, DOM,
attacks, preventive methods.

INTRODUCTION
The Shadow DOM (Document Object Model) is
a crucial component of web technologies,
particularly in modern web development. The
Shadow DOM provides a way to encapsulate a
DOM subtree within a document. This means
that the elements, styles, and behaviors within
the Shadow DOM are scoped and isolated from
the rest of the document. Styles defined within
the Shadow DOM are scoped to the elements
within that Shadow DOM subtree (Figure 1).

(Figure 1: Shadow DOM Structure)

This prevents styles from leaking out and
affecting other parts of the document, and it
also prevents external styles from affecting
elements within the Shadow DOM. The
structure of the Shadow DOM subtree is
separate from the main document's DOM
structure. While elements within the Shadow
DOM can be accessed and manipulated
programmatically, they are not directly
accessible from outside the Shadow DOM,
enhancing encapsulation and modularity.
Shadow DOM allows for the composition of
complex user interface components by
encapsulating their internal structure and
styling. This makes it easier to manage and
maintain large web applications by breaking
them down into smaller, reusable components.
Uses of Shadow DOM:
1. Web Components: The Shadow DOM is a
fundamental part of the Web Components
standard, which allows developers to create
custom HTML elements with encapsulated
functionality and styling. Web Components
consist of four main specifications: Custom
Elements, Shadow DOM, HTML Templates,
and HTML Imports.
2. UI Libraries and Frameworks: Many modern
UI libraries and frameworks, such as Polymer,
Angular, and React, leverage the Shadow DOM
to build reusable and encapsulated components.
These frameworks provide abstractions and
tools to simplify the creation and management
of Shadow DOM-based components.
Benefits of the Shadow DOM:
1. Encapsulation: Encapsulating components
within the Shadow DOM helps prevent
unintended style and behavior conflicts, making
it easier to maintain and reason about complex
web applications.

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-11, ISSUE-2, 2024

16

2. Reusability: Components built using the
Shadow DOM are inherently reusable, allowing
developers to create modular and composable
user interface elements that can be easily
integrated into different projects.
3. Scoped Styling: Scoped styling provided by
the Shadow DOM enables developers to apply
styles to specific elements without affecting the
global CSS namespace, leading to more
maintainable and predictable CSS code.

SHADOW DOM ATTACKS
The Shadow DOM is a powerful feature of
modern web development that enables
encapsulation, modularity, and reusability of
web components, contributing to the
development of more scalable and maintainable
web applications. Some common Shadow DOM
attacks include:

1. Cross-site scripting (XSS): Attackers may
attempt to inject malicious scripts into the
Shadow DOM, which can then execute
within the context of the web page,
potentially stealing sensitive information
or performing unauthorized actions
(Figure 2).

(Figure 2: Cross-site scripting (XSS))

2. Data leakage: Improperly implemented

Shadow DOM can lead to unintended data
exposure, where sensitive information
within the encapsulated components is
inadvertently accessible to malicious
actors (Figure 3).

(Figure 3: Data leakage)

3. DOM manipulation: Attackers may
attempt to manipulate the Shadow DOM
to alter the appearance or behavior of
components in unintended ways,
potentially leading to user confusion or
exploitation of vulnerabilities.

PREVENTING SHADOW DOM ATTACKS
To prevent Shadow DOM attacks, developers
should follow best practices such as:
1. Sanitizing inputs: Ensure that all user inputs
are properly validated and sanitized to prevent
XSS attacks.
2. Implementing Content Security Policy (CSP):
Enforce CSP headers to restrict the sources
from which resources like scripts, stylesheets,
and fonts can be loaded, reducing the risk of
XSS attacks.
3. Securing data access: Limit access to
sensitive data within the Shadow DOM and
implement proper authentication and
authorization mechanisms to control who can
access it.
4. Avoiding inline scripts and styles: Minimize
the use of inline scripts and styles within the
Shadow DOM, as they can increase the risk of
XSS attacks.
5. Regularly updating dependencies: Keep all
libraries and frameworks used within the
Shadow DOM up-to-date to mitigate the risk of
known vulnerabilities being exploited.
6. Using secure coding practices: Follow secure
coding practices and adhere to security
guidelines provided by frameworks and
libraries used in the project.

CONCLUSION
By implementing these measures, developers
can help mitigate the risk of Shadow DOM
attacks and ensure the security of their web

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-11, ISSUE-2, 2024

17

applications. Additionally, staying informed
about emerging threats and security best
practices is essential for maintaining a robust
defense against evolving attack vectors.

REFERENCES
1. Flanagan, David. “JavaScript: The Definitive
Guide.” O’Reilly Media, 2020.
2. Grigorik, Ilya. “High Performance Browser
Networking.”O’Reilly Media, 2013.
3. “Shadow DOM v1: Self-Contained Web
Components.” W3C Working Draft, 19 May
2016.
4. “Using Shadow DOM.” MDN Web Docs,
developer.mozilla.org/en-
US/docs/Web/Web_Components/Using_shadow
_DOM.
5. Koch, T. “Building Web Components:
Scalable, Maintainable, and Powerful Web
Components for a Complex Web.” Apress,
2020.
6. PavithraKodmad, “Shadow DOM in Depth”,
Google Web Fundamentals,
developers.google.com/web/fundamentals/web-
components/shadowdom.
7. Wattenberg, Martin, and Kriss Schaffer.
“How to Shadow DOM.”Medium, 16 Mar.
2020, medium.com/swlh/how-to-shadow-dom-
43615a4cbe5f.
8. Zacharias, Ryan. “Understanding Shadow
DOM v1: Creating Self-Contained Web
Components.” Smashing Magazine, 14 Feb.
2018.
9. “Shadow DOM API.” MDN Web Docs,
developer.mozilla.org/en-
US/docs/Web/API/ShadowRoot.
10. Panchal, Bhagyashree. “Styling Web
Components Using Shadow DOM.”Medium, 5
Sept. 2019.13.

	/
	SHADOW DOM ATTACKS AND PREVENTION METHODS –
	A REVIEW
	Dr. N. Alamelu Mangai
	Assistant Professor,
	Department of Information Technology,
	Kongunadu Arts and Science College, Coimbatore, Tamilnadu, India.
	Email: alamelumangai.n@gmail.com

