

 ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-2, ISSUE-7, 2015

119

SPARSE BASED FINGERPRINT COMPRESSION AND
COMPARISON WITH SPIHT AND WSQ

1Kalandar Shafi, 2Maya V. Karki
1Student, 2Associate Professor

M. S. Ramaiah Institute of Technology,Bangalore, India.
Email: 1shafisera@gmail.com, 2mayavkarki@msrit.edu

Abstract— The increase in collection of
fingerprints created the problem of storage
and transmission. In order to reduce the
storage and transmission bandwidth,
compression techniques are needed. Many
image compression techniques are available
at present. This paper introduces sparse
based algorithm to compress fingerprint.
Using an adapted dictionary that contains
prototype atoms of patch, fingerprint can be
described as a sparse linier combination of
these atoms. Sparse coefficients that
represents given fingerprints are quantized
and entropy encoded. The algorithm is tested
on fingerprint databases FVC 2000, FVC
2002, FVC 2004 and our own database. The
result of proposed algorithm is compared with
WSQ and SPIHT algorithms. The
experimental results show that the fingerprint
compression using proposed algorithm gives
better result compared to WSQ and SPIHT in
most of the cases. The experiment shows the
compression ratio of 35:1 with maximum
PSNR of 30.32dB for FVC2004 database.

Keywords— Compression Ratio, Fingerprint,
PSNR, Sparse, SPIHT, WSQ.

I. INTRODUCTION
Fingerprints are the ridge and curve patterns on
the tip of finger [1], [2]. It plays important role in
legal matters such as authentication of person,
investigation of crime and many other security
applications [3], [4]. Among many biometrics
fingerprint is one of the matured technique

because of their immutability and individuality
[5]. Immutability refers to unchanging character
of fingerprint pattern before birth till
decomposition after death and Individuality
refers to uniqueness of patterns across the
individuals. The increase in fingerprint
collection created the problem for storage and
transmission. Although there are many image
compression techniques are available, there is a
need for developing faster, robust and less
complexity algorithm for fingerprint
compression.
 Difficulty in developing fingerprint
compression algorithm is need for preserving
recognition parameters used for identification
after compression.

 Compression techniques are classified
into lossless and lossy compression. Lossless
compression techniques are able to reconstruct
the image exactly same as original, but it gives
less compression ratio. Lossless compression
techniques are able to give higher compression
ratio, but it loses some information of the
original image.

 Generally lossy image compression
techniques includes transforming an image to
other domain by using Discrete Cosine
Transform (DCT) or Discrete Wavelet
Transform (DWT), quantizing transformed
coefficients and entropy encoded.

DCT based compression techniques includes
dividing image into 8×8 block, DCT is applied to

 INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

 ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-2, ISSUE-7, 2015

120

each block to get coefficients, these are
quantized and then entropy encoded. DCT
compression techniques are used in JPEG [6].
JPEG compression is simple, but when the
compression ratio is high it will not be able
reconstruct the image efficiently.

 The DWT based algorithm includes
applying DWT to the normalized image to get
coefficients, these are quantized and then
entropy encoded. DWT based compression
technique is used in JPEG2000 [7].

 There are other DWT based algorithms
such as Set Partitioning in Hierarchical Trees
(SPIHT) algorithm [8] and FBI standard WSQ
algorithm [9],[10].These to algorithms are used
along with the proposed algorithm to compare
the result.

 This paper also gives fingerprint
compression based on sparse representation [11].
It includes construction of dictionary, each
column of dictionary is known as atom.
Fingerprint are divided into small blocks called
patches, whose dimension is equal to atom size.
Coefficients are obtained by using method of
sparse representation. These coefficients are
quantized and entropy encoded.

 Performance is measured using Peak
Signal to Noise Ratio (PSNR) and Compression
Ratio. High PSNR indicates that the
reconstructed image retained more components
after compression. Compression Ratio indicates
number of bits required to represent fingerprint
after compression as that of original.

II. SPIHT algorithm

The SPIHT algorithm is a more efficient
algorithm which was presented by Shapiro [12].
The SPHIT algorithm includes following steps:
initialization, sorting pass, refinement pass,
quantization and step update pass.

After applying wavelet transform to an image,
the SPIHT algorithm divides the coefficients into
significant and insignificant partitions based on
the following function:

ܵሺܶሻ ൌ 	 ൜
ሼหܿ,หሽ	ሺ,ሻఢ்ݔܽ݉			,1 2

݁ݏ݅ݓݎ݄݁ݐ																									,0
… (1)

Where ܵሺܶሻ is the significance of a set of
coordinates T, and ܿ, is the coefficient value at
coordinates (i, j). There are two passes in the
algorithm sorting pass and the refinement pass.
The SPIHT encoding process consist of three
lists:

LIP (List of Insignificant Pixels) – it contains
individual coefficients that have values smaller
than thresholds.

LIS (List of Insignificant Sets) – it consist of
group of coefficients that are defined by tree
structures and are found to have magnitudes less
than the threshold.

LSP (List of Significant Pixels) – it consist of
coefficients larger than the threshold.

Initialization: In this stage threshold N, LSP,
LIP, LIS are initialized. Threshold is initialized
as given in equation (2). Therefore LSP becomes
empty, LIP consist of pixels less than the
threshold N, and LIS consist of set of pixels less
than threshold N. After initialization algorithm
iteratively repeats by decreasing threshold N as
N/2.

݊௫ ൌ ሾ݈݃ଶሺ݉ܽݔ,ሼ|ܿ, |})]……… (2)

Sorting pass: The purpose of sorting pass is to
manipulate the contents of LIP, LSP, LIS, so that
they are correct with respect to the current
threshold. During sorting pass, coordinates of the
coefficients remain in LIP are tested for
significant. The result is sent to output and out of
it the significant will be transferred to the LSP as
well as sending sign bit to the output. Sets in LIS
also tested for significant, if that found to be
significant, it will be removed and partitioned
into subsets. Subsets with only one coefficient
and found to be significant, will be eliminated
and divided into subsets. Subsets having only
one coefficient and found to be significant will
be inserted to the LSP, otherwise they will be
inserted to the LIP.

Refinement pass: The refinement pass follows
the sorting pass and gives out the bit
corresponding to the current value of threshold
for each of pixels in the LSP which were not

 INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

 ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-2, ISSUE-7, 2015

121

added in the immediately previous sorting pass.

In this pass, the n୲୦ MSB of the coefficients in
the LSP is passed to the output.

In Quantization and Step update pass, the value
of threshold N decremented as N/2. The sorting
and refinement pass is been repeated until
threshold N reaches to zero and all nodes in the
LSP have all their bits output. The latter case will
give an almost exact reconstruction since all the
coefficients have been processed completely.

The bit rate can be controlled exactly in the
SPIHT algorithm as the output produced is in
single bits and the algorithm can be finished at
any time. The decoding process follows the
encoding exactly and is almost symmetrical in
terms of processing time.

III. WSQ ALGORITHM
A simplified block diagram of WSQ is given in
figure 1. The algorithm consist of three main
steps: decomposition of original fingerprint by
applying discrete wavelet transform, these
wavelet coefficients are quantized using uniform
scalar quantization, and these quantized
coefficients are entropy encoded.
 In WSQ encoder, the original fingerprint
is decomposed into 64 subbands of wavelet
coefficients by applying discrete wavelet
transform with level 5 as shown in figure 2.
These subbands are quantized using adaptive
uniform scalar quantization technique.
Quantization coefficient of ݇௧subband
ܽሺ݉, ݊ሻ is given by the equation (3).

,ሺ݉ ݊ሻ ൌ

ە
ۖ
۔

ۖ
ቔۓ

ೖሺ,ሻିሺ.	ொೖሻ

ொೖ
ቕ 1				; 	ܽሺ݉, ݊ሻ 0.6	ܳ

0	; 	 െ 0.6	ܳ ܽሺ݉, ݊ሻ 0.6	ܳ

ቒೖ
ሺ,ሻାሺ.	ொೖሻ

ொೖ
ቓ െ 1; ܽሺ݉, ݊ሻ ൏ 0.6	ܳ

	(3)

At the decoder, the de-quantization of a
quantized coefficients are computed using
equation (4).

ậܽ ൌ ൞

൫ሺ݉, ݊ሻ	 െ ൯ܳܥ ൫0.6	ܳ൯; ,ሺ݉ ݊ሻ 0

0																																																					; ,ሺ݉ ݊ሻ ൌ 0
ሺሺ݉, ݊ሻ ሻܳܥ െ ൫0.6	ܳ൯; ,ሺ݉ ݊ሻ ൏ 0

 ….(4)

Where ܽሺ݉, ݊ሻ is wavelet coefficient of ݇௧
subband, ܳ represents Quantization table value

of ݇௧ subband, C determines quantization bin
width,

ܳ=൞

,ݍ/1 																																																																	݇ ൌ 4	ݐ	1

10/ሺܣݍ logሺߪ
ଶሻሻ, 			݇ ൌ ߪ	݀݊ܽ	60	ݐ	5

ଶ 1.01		
0, 																																			݇ ൌ ߪ	ݎ	64	0ݐ	61

ଶ ൏ 1.01

(5)

Where ߪ
ଶ is variance of ݇௧subband and q can

be set to get prespecified compression ratio and
 . given by equation (6)ܣ
 Quantized coefficients are entropy encoded
using run length encoding method followed by
Huffman encoding. Run length encoding is done
according to the conditions given in table 2.

ܣ ൌ

ە
ۖ
۔

ۖ
,1.32ۓ 	݇ ൌ 53,57

1.08, 	݇ ൌ 54,59

1.42, 	݇ ൌ 55,58

1.08, 	݇ ൌ 56,60

1.00, ݁ݏ݅ݓݎ݄݁ݐ	

 (6)

Coefficient values are mapped to the
symbols according to Table 2. After run length
coding the symbols are grouped into three and
Huffman encoding is applied to each group
separately.

Figure 1. Simplified WSQ encoder and decoder
block diagram

1 2 5 8 9 2
0

2
1

2
4

2
5

53 54
3 4
6 7 1

0
1
1

2
2

2
3

2
6

2
7

12 1
3

1
6

1
7

2
8

2
9

3
2

3
3

14 1
5

1
8

1
9

3
0

3
1

3
4

3
5

36 3
7

4
0

4
1

52 55 56

38 3
9

4
2

4
3

44 4
5

4
8

4
9

46 4
7

5
0

5
1

57 58 61 62

DWT
Quanti
zation

Input
Image

Compress
ed image

De‐
quantization

Entropy
decoding

Entropy
encoding

Compress
ed image

Recons
tructed
image

Inverse
DWT

 INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

 ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-2, ISSUE-7, 2015

122

59 60 63 64

Figure 2. WSQ standard DWT decomposed sub
bands

IV. SPARSE ALGORITHM

Sparse algorithm includes construction of the
dictionary, sparse encoding, quantization and
entropy coding. The simplified flow diagram of
sparse algorithm is shown Figure 3.

A. Construction of dictionary

Fingerprint image is divided into patches with
equal size. Initially dictionary is empty and first
patch is added to the dictionary. Next patch is
tested whether it is similar to the patch present in
the dictionary by using similarity measure
equation (7).

ܵሺܲ1, ܲ2ሻ ൌ ݉݅݊ ฯ
ଵ

‖ଵ‖ಷ
మ 	 െ ݐ ∗ ଶ

‖ଶ‖ಷ
మฯ

ி

ଶ

….. (7)
Where ‖∙‖ி

ଶ represents Frobenius norm, P1, P2
indicates patches used for similarity measure and
t is a scaling factor.

Symbol Value

1

2

3

.

.

100

101

102

103

104

105

106

107

108

.

.

179

Zero run of length 1

Zero run of length 2

Zero run of length 3

.

.

Zero run of length 100

Escape for positive 8 bit coefficient

Escape for negative 8 bit coefficient

Escape for positive 16 bit

coefficient

Escape for negative 16 bit

coefficient

Escape for 8 bit zero run

Escape for 16 bit zero run

Coefficient value -73

Coefficient value -72

.

180

181

.

.

253

254

.

Coefficient value -1

(same as symbol 1)

Coefficient value 1

.

.

Coefficient value 73

Coefficient value 74

Table 2: Huffman coding model [13]

Figure 3. Simplified block diagram of sparse
algorithm

If patch under test is similar to any
patches in the dictionary, then atom number
corresponding to that patch is stored. Otherwise
the patch under test is added to the dictionary. In
this work, dictionary is constructed in two
methods and they are described below.

1. Dictionary based on Random Select: In this
method, selection of fingerprint patches is
done randomly and these randomly selected
patches are arranged as columns of
dictionary matrix [11].

2. Dictionary based on K-SVD: K-SVD is a K-
means Singular Value Decomposition
algorithm. It is a dictionary learning
algorithm using K- means clustering method
[16].K-SVD algorithm finds sparse

InputImage

Construction
of dictionary

Sparse
Encoding

Quantization

Entropy
Encoding

Compressed
bitstream

Compressed
bitstream

Entropy
Decoding

De-Quantization

Sparse
Decoding

Reconstruc
ted image

 INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

 ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-2, ISSUE-7, 2015

123

coefficients and updates the dictionary atoms
alternatively.

The dictionary is obtained by iteratively solving
an optimization problem (6) using Orthogonal
Matching Pursuit (OMP) method.

ฮܻ	 െ ฮܺܦ 	, ,݅∀		ݐ݄ܽݐ	݄ܿݑݏ ‖ ܺ‖ ൏ ܶ	ி

ଶ

,

 ….. (6)

where Y represents column of patch, A
represents a dictionary, X represents sparse
coefficient and T is sparsity constraint.
B. Sparse encoding and updating dictionary

For current dictionary sparse coefficients ݔ

are calculated by solving equation (8)
Orthogonal Matching Pursuit (OMP) method.
Then the dictionary column ݀ is updated for
given	ݔ. Set ω such that it contains non-zero
coefficients of	ݔ and overall error matrix is
computed by using equation (9).

ܧ ൌ ܻ െ 	∑ ்ܺܦ

ஷ …. (9)

ܧ is chosen to obtain	 corresponding to ωܧ
?்,

then SVD decomposition is applied asܧ
ோ=

UΔVT, then the first column of U is chosen as
updated dictionary column ݀, then updated the
coefficient vector ݔ as first column of V
multiplied by Δ(1,1). Thus sparse encoding and
updating of dictionary are done alternatively.

C. Quantization and entropy encoding

 Sparse coefficients are quantized using
uniform quantization and these quantized
coefficients are encoded using Huffman
encoding to get compressed bit stream.

V. EXPERIMENTS AND RESULTS

This section describes the experiments on
different fingerprints. First the databases used for
this study has been described. Experimental
result for different dictionary methods is given.
Next, experimental result for different patch
sizes are described. Then comparison between
different three algorithms that is SPARSE,
SPIHT, WSQ is been described.
A. Databases used

There are 4 groups of fingerprints are used in
this experiments namely:
 DATABASE 1: The public fingerprint

database FVC2000: DB1(B), DB2(B),

DB3(B), and DB4(B) with 10 persons each
with 8 samples per person thus total of 320
fingerprints.

 DATABASE 2: the public fingerprint
database FVC2002: DB1(B), DB2(B),
DB3(B), and DB4(B) with 10 persons each
with 8 samples per person thus total of 320
fingerprints.

 DATABASE 3: The public fingerprint
database FVC2002: DB1(B), DB2(B),
DB3(B), and DB4(B) with 10 persons each
with 8 samples per person thus total of 320
fingerprints.

 DATABASE 4: The MSRIT_ec fingerprint
database with 100 persons with 10 samples
per person thus total of 1000 fingerprints.

B. Experimental result for different dictionary
methods
In this section, the effects of different

dictionary methods on fingerprint compression is
studied. First method is selecting the patches
randomly, and arranged them as columns of
dictionary and second method to train the
dictionary using KSVD method. These methods
are tested for DATABASE3 with patch size = 12
× 12. In this experiment PSNR is computed from
equation (10) and CR (Compression Ratio) from
equation (11).

PSNR = 10*݈݃ଵ
ଶହହ^ଶ

ெௌா
 ….. (10)

Where, MSE is Mean Square Error which
defined as

MSE =
ଵ

ெ∗ே
	 ∑ ∑ ሾܺሺ݉, ݊ሻ െ ܻሺ݉, ݊ሻሿଶ	ேିଵ

ୀ
ெିଵ
ୀ ….. (11)

Where, X (m, n) represents Original Image and
Y (m, n) represents Reconstructed image, M and
N indicates number of rows and column in the
image respectively.

ܴܥ ൌ ே௨		௧௦		ை	ூ

ே௨		௧௦		௦௦ௗ	ூ
 ….. (12)

Figure 4 and table 3 represents performance of
proposed algorithm under different dictionary
methods. Vertical axis indicates average PSNR
values for different compression ratios indicated
in horizontal axis. Experimental results shows
that KSVD method performs better compared
Random select method. Therefore KSVD
method is used for further experiments.
C. Experimental result for different patchsizes

 INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

 ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-2, ISSUE-7, 2015

124

This section describes experimental results
for different patch sizes 8 × 8, 10 × 10, 12 ×12,
16 × 16 are described. Figure 5 shows the
dictionary with patch size of 12×12. Figure 6 and
table 4 represents average performance of sparse
algorithm under different patch sizes for
DATABASE1.

CR

PSNR(dB)

KSVD
Random
Select

20 33.2 31.87
22.5 32.52 31.42
25 32.03 31.06

27.5 31.62 30.91
30 31.27 30.58

32.5 30.91 30.39
35 30.53 30.12
40 30.1 28.3

Table 3: performance of proposed algorithm for
different Dictionary methods for DATABASE3.

Figure 4. Performance of sparse algorithm

under different dictionary method for
DATABASE3.

Figure 5 Dictionary with patch size = 12×12

Figure 7 and table 5 represents average
performance of sparse algorithm under different
patch sizes for DATABASE 2. Figure 8 and table
6 represents average performance of sparse
algorithm under different patch sizes for
DATABASE 3. Figure 9 and table 7 represents
average performance of sparse algorithm under
different patch sizes for DATABASE 4. Vertical
axis indicates average PSNR values for different
compression ratios indicated in horizontal axis.
Experimental results shows that 8×8, 10×10
performs better compared to patch sizes of
12×12, 16×16 but it consumes more time for
compression and decompression. Therefore
patch size of 12×12 is used further in our
experiments.

CR
PSNR(dB)

8*8 10*10 12*12 16*16
20 32.8 32.45 32.23 31.86

22.5 32.297 32.18 31.83 31.51
25 31.75 31.55 31.22 31.18

27.5 31.15 31.08 30.97 30.76
30 30.68 30.65 30.41 30.17

32.5 30.02 30.16 30.19 30.16
35 29.995 30.12 30.155 30.157
40 28.44 28.23 28.43 28.33

Table 4 represents average performance of
sparse algorithm under different patch sizes for

DATABASE 1.

Figure 6 represents performance of sparse
algorithm under different patch sizes for

DATABASE 1.

CR
PSNR(dB)

8*8 10*10 12*12 16*16
20 33.69 33.45 33.28 33.04

22.5 33.26 33.13 33.02 32.83

25

26

27

28

29

30

31

32

33

34

20 22 . 5 2 5 27 . 5 3 0 32 . 5 3 5 40

P
SN

R
(D
B
)

COMPRESSION RATIO

KSVD

Random
select

25

26

27

28

29

30

31

32

33

34

20 22 . 5 2 5 27 . 5 3 0 32 . 5 3 5 40

P
SN

R
(D
B
)

COMPRESSION RATIO

8*8

10*10

12*12

16*16

 INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

 ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-2, ISSUE-7, 2015

125

25 32.73 32.45 32.24 32.11
27.5 32.32 32.09 31.23 31.23
30 31.68 31.55 31.14 31.14

32.5 31.16 31.18 31.19 31.21
35 30.82 31.01 31.04 31.13

Table 5 represents performance of sparse
algorithm under different patch sizes for

DATABASE 2.

D. Comparison different compression
algorithms
This section describes comparison between
Sparse, SPIHT, WSQ algorithms.

Figure7 represents performance of sparse
algorithm under different patch sizes for

DATABASE 2.

CR

PSNR(dB)
8*8 10*10 12*12 16*16

20 33.94 33.35 33.14 32.98
22.5 33.27 33.04 32.87 32.51
25 32.86 32.76 32.35 32.013

27.5 32.21 32.27 32.23 31.63
30 31.65 31.45 31.21 31.13

32.5 31.16 31.15 30.87 30.81
35 30.88 30.92 30.94 30.96

Table 6 represents performance of sparse
algorithm under different patch sizes for

DATABASE 3.

Figure 8 represents average performance of

sparse algorithm under different patch sizes for
DATABASE 3.

CR

PSNR(dB)
8*8 10*10 12*12 16*16

20 32.83 32.45 32.21 31.85
22.5 32.31 32.04 31.87 31.53
25 31.87 31.54 31.23 31.09

27.5 31.35 31.13 31.09 30.98
30 30.54 30.22 30.13 30.06

32.5 30.11 30.04 29.98 29.99
35 29.96 29.97 29.96 29.97

Table 7 represents performance of sparse
algorithm under different patch sizes for

DATABASE 4.

Figure 9 represents performance of sparse
algorithm under different patch sizes for

DATABASE 4.

CR

PSNR(dB)
Sparse WSQ SPIHT

20 32.23 31.34 32.25
22.5 31.83 30.96 31.81
25 31.22 30.42 31.17

27.5 30.97 30.05 30.72
30 30.41 29.99 30.23

32.5 30.19 29.62 29.83
35 30.155 29.25 29.71
40 28.7 27.1 27.33

29

30

31

32

33

34

20 22 . 5 2 5 27 . 5 3 0 32 . 5 3 5

P
SN

R
(D
B
)

COMPRESSION RATIO

8*8

10*10

12*12

16*16

29

30

31

32

33

34

35

20 22 . 5 2 5 27 . 5 3 0 32 . 5 35

P
SN

R
(D
B
)

COMPRESSION RATIO

8*8
10*10
12*12

28

30

32

34

20 22 . 5 2 5 27 . 5 3 0 32 . 5 3 5

P
SN

R
(D
B
)

COMPRESSION RATIO

8*8

10*10

12*12

 INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

 ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-2, ISSUE-7, 2015

126

Table 8 represents performance of SPARSE,
WSQ, SPIHT algorithms for DATABASE 1.

Figure 10 represents performance of SPARSE,
WSQ, SPIHT algorithms for DATABASE 1.

CR

PSNR(dB)
Sparse WSQ SPIHT

20 33.28 32.54 33.43
22.5 33.02 32.13 33.07
25 32.24 31.42 32.21

27.5 31.23 31.07 31.17
30 31.14 30.31 30.92

32.5 31.19 29.93 30.55
35 31.04 29.48 30.24

Table 9 represents performance of SPARSE,
WSQ, SPIHT algorithms for DATABASE 2.

Figure 11 represents performance of SPARSE,
WSQ, SPIHT algorithms for DATABASE 2.

CR

PSNR(dB)
Sparse WSQ SPIHT

20 33.14 33.136 33.23
22.5 32.87 32.854 32.92
25 32.35 32.313 32.336

27.5 32.23 32.217 32.227
30 31.21 31.026 31.13

32.5 30.87 30.743 30.52
35 30.44 30.298 30.32

Table 10 represents performance of SPARSE,
WSQ, SPIHT algorithms for DATABASE 3.

Figure 12 represents performance of SPARSE,
WSQ, SPIHT algorithms for DATABASE 3.

Figure 10 and table 8 represents average
performance of SPARSE, WSQ, SPIHT
algorithms for DATABASE 1. Figure 10 and
table 6 represents average performance of
SPARSE, WSQ, SPIHT algorithms for
DATABASE 2. Figure 11 and table 6 represents
average performance of SPARSE, WSQ, SPIHT
algorithms for DATABASE 3. Figure 12 and
table 7 represents average performance of
SPARSE, WSQ, SPIHT algorithms for
DATABASE 4.

 Vertical axis indicates average PSNR values
for different compression ratios indicated in
horizontal axis. Experimental results shows that
SPARSE algorithm performs better than SPIHT
and WSQ in most of the cases. But due to the
complexity of SPARSE algorithm, it takes more
processing time compared to SPIHT and WSQ.
Figure 14, 15, 16 shows sampled result for
SPARSE, SPIHT, WSQ algorithms.

CR

PSNR(dB)

Sparse WSQ SPIHT
20 31.43 30.32 31.17

22.5 30.22 29.51 30.26

25 29.53 28.72 29.12

27.5 28.21 27.17 28.44

24

25

26

27

28

29

30

31

32

33

20 22 . 5 2 5 27 . 5 30 32 . 5 3 5 40

P
SN

R
(D
B
)

COMPRESSION RATIO

sparse

WSQ

SPIHT

27

28

29

30

31

32

33

34

20 22 . 5 2 5 27 . 5 3 0 32 . 5 35

P
SN

R
(D
B
)

COMPRESSION RATIO

SPARSE

WSQ

SPIHT

28

29

30

31

32

33

34

20 22 . 5 2 5 27 . 5 30 32 . 5 3 5

P
SN

R
(D
B
)

COMPRESSION RATIO

spase
WSQ
SPIHT

 INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

 ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-2, ISSUE-7, 2015

127

30 27.83 26.53 27.72

32.5 27.04 26.03 26.92

35 25.65 25.42 25.63
Table 11 represents performance of SPARSE,
WSQ, SPIHT algorithms for DATABASE 4.

Figure 13: represents performance of SPARSE,
WSQ, SPIHT algorithms for DATABASE4.

(a) (b) (c) (d)

Figure 14:(a) Original image 101_1 from FVC2002_DB1B,(b) sparse output with PSNR = 33.95
dB, (c) WSQ output with PSNR = 31.72dB, (d) SPIHT output with PSNR = 32.77 dB at

compression ratio 30:1

(a) (b) (c) (d)
Figure 15:(a) Original image 101_2 from FVC2002_DB1B, (b) Sparse output with PSNR =

30.04dB, (c) WSQ output with PSNR = 20.38dB, (d) SPIHT output with PSNR = 29.17dB at
compression ratio = 35:1

(a) (b) (c) (d)

Figure 16: (a) Original image 11_10 from DATABASE4, Reconstructed image (b) with sparse,
PSNR = 29dB (c) with WSQ, PSNR = 21.32dB (d) with SPIHT, PSNR = 28.96dB.

0

5

10

15

20

25

30

35

20 22 . 5 2 5 27 . 5 3 0 32 . 5 3 5

P
SN

R

COMPRESSION RATIO

sparse

WSQ

SPIHT

 INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

 ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-2, ISSUE-7, 2015

128

VI. CONCLUSION AND FUTURE WORK
Fingerprint compression using SPARSE, SPIHT
and WSQ algorithm has been described.
Experiments are conducted on four set of
databases. Dictionary is constructed using
Random select and K-SVD. Experimental results
shows that the Dictionary Construction based on
K-SVD performs better than Random select
method. Experiments are conducted on different
patch sizes, patch size of 12 × 12 gives better
performance compared to other patch sizes. The
proposed algorithm is also compared with
SPIHT and WSQ. The Experimental results
show that proposed algorithm outperforms
SPIHT and WSQ in most of the cases.
 As a future work optimization algorithm
for solving sparse representation need to be
investigated, complexity and processing time of
the code is need to be reduced. Improvement
quantization and entropy encoding part.
Different method for constructing dictionary can
used to yield better result.

REFERENCES
[1] ShohrehKasaei, Mohamed Deriche,

BoualernBoash,”A novel Fingerprint
compression technique using wavelet packet
and Pyramid Lattice Vector Quantization,”
IEEE transaction on Image Processing vol
11, No. 12, Dec-2002, pp no. 1365-1378.

[2] S. Esakkiroyan, T.Veerakumar, V.
SenthilMurugan and R. Sudhakar
“Fingerprint compression using counterlet
transform and multistage vector
quantization,” International journal of
Computer, Information System and Control
Engineering, vol. 1, No.3, 2007.

[3] D. Maltoni, D. Miao, A. K. Jain and S.
Prabhakar,” Handbook of Fingerprint
Recognition, 2nd edition, London, U. K.
Spinger-Verlag 2009.

[4] VaniPerumal, JagannathaRamaswamy, “ An
innovative scheme for effectual Fingerprint
compression using Beizer Curve
representation,” International Journal on
Computer Science and Information Security,
vol. 6, No. 1, 2009, P. no:149-157.

[5] Guangqishao, Yamping Wu, Yong A, Xialo
Liu and TiandeGuo,“Finger print image
compression based on sparse
representation”, IEEE transaction on image
processing, page no:489-501, vol. 223, no.2,
Feb2014.

[6] W. Pennebaker and J. Mitchell, JPEG—Still
Image Compression Standard. New York,
NY, USA: Van Nostrand Reinhold, 1993.

[7] M. W. Marcellin, M. J. Gormish, A. Bilgin,
and M. P. Boliek, “An overview of JPEG-
2000,” in Proc. IEEE Data Compress. Conf.,
Mar. 2000, pp. 523–541.

[8] A. Said, W. A. Pearlman,”A new fast and
efficient Image coded based on SPIHT”,
IEEE transaction on circuits and systems for
video Technologies, vol. 6, pp. 243-
250,1996.

[9] Jonathan N. Bradley, Christopher M.
Brislawn, Tom hopper, ”The FBI
wavelet/scalar quantization standard for
gray-scale fingerprint image compression,”
Society of photo-optical instrumentation
engineers proceedings, pp293-304, volume
1961, visual information proceeding II,
Orlando, Florida, April 1993.

[10]B. Karunakumar, K. Sathyaprasad,
“Wavelet scalar quantization,” International
journal of advanced networking and
applications, pp 141-146, volume 01,
Issue:02, April 2009.

[11] Guangqi Shao, Yamping Wu, Yong A,
Xialo Liu and Tiande Guo,“Finger print
image compression based on Sparse
representation”, IEEE Transaction on Image
Processing, Page No:489-501, vol. 223,
No.2, Feb2014.

[12] J.M. Shapiro, “Embedded Image Coding
using Zerotrees of Wavelet Coefficients”,
IEEE Trans. On Signal Processing, pp. 3445-
3462, 1993.

[13] David Solomon, “data compression the
complete reference”, 4th edition, springer,
2011.

[14] K. Sayood, “Introduction to data
compression”, third edition, Morgan
kaufman publisher, 2006.

[15] Naja M I, Afzal, “Finger print image
compression based on sparse representation:

 INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

 ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-2, ISSUE-7, 2015

129

a review” , International journal of computer
scince and information
technology,vol.6,pp.228-231,2015.

[16] Aharon, M. Elad, and A. Bruckstein,” K-
SVD, an algorithm for designing
overcomplete dictionaries for sparse
representation”, IEEE transactions on signal
processing 2006.

