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Abstract— The increase in collection of 
fingerprints created the problem of storage 
and transmission. In order to reduce the 
storage and transmission bandwidth, 
compression techniques are needed.  Many 
image compression techniques are available 
at present. This paper introduces sparse 
based algorithm to compress fingerprint. 
Using an adapted dictionary that contains 
prototype atoms of patch, fingerprint can be 
described as a sparse linier combination of 
these atoms. Sparse coefficients that 
represents given fingerprints are quantized 
and entropy encoded. The algorithm is tested 
on fingerprint databases FVC 2000, FVC 
2002, FVC 2004 and our own database. The 
result of proposed algorithm is compared with 
WSQ and SPIHT algorithms. The 
experimental results show that the fingerprint 
compression using proposed algorithm gives 
better result compared to WSQ and SPIHT in 
most of the cases. The experiment shows the 
compression ratio of 35:1 with maximum 
PSNR of 30.32dB for FVC2004 database. 

Keywords— Compression Ratio, Fingerprint, 
PSNR, Sparse, SPIHT, WSQ. 

I. INTRODUCTION 
Fingerprints are the ridge and curve patterns on 
the tip of finger [1], [2]. It plays important role in 
legal matters such as authentication of person, 
investigation of crime and many other security 
applications [3], [4]. Among many biometrics 
fingerprint is one of the matured technique 

because of their immutability and individuality 
[5]. Immutability refers to unchanging character 
of fingerprint pattern before birth till 
decomposition after death and Individuality 
refers to uniqueness of patterns across the 
individuals. The increase in fingerprint 
collection created the problem for storage and 
transmission. Although there are many image 
compression techniques are available, there is a 
need for developing faster, robust and less 
complexity algorithm for fingerprint 
compression. 
 Difficulty in developing fingerprint 
compression algorithm is need for preserving 
recognition parameters used for identification 
after compression.  

 Compression techniques are classified 
into lossless and lossy compression. Lossless 
compression techniques are able to reconstruct 
the image exactly same as original, but it gives 
less compression ratio. Lossless compression 
techniques are able to give higher compression 
ratio, but it loses some information of the 
original image.  

 Generally lossy image compression 
techniques includes transforming an image to 
other domain by using Discrete Cosine 
Transform (DCT) or Discrete Wavelet 
Transform (DWT), quantizing transformed 
coefficients and entropy encoded. 

DCT based compression techniques includes 
dividing image into 8×8 block, DCT is applied to 
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each block to get coefficients, these are 
quantized and then entropy encoded. DCT 
compression techniques are used in JPEG [6]. 
JPEG compression is simple, but when the 
compression ratio is high it will not be able 
reconstruct the image efficiently. 

 The DWT based algorithm includes 
applying DWT to the normalized image to get 
coefficients, these are quantized and then 
entropy encoded. DWT based compression 
technique is used in JPEG2000 [7]. 

 There are other DWT based algorithms 
such as Set Partitioning in Hierarchical Trees 
(SPIHT) algorithm [8] and FBI standard WSQ 
algorithm [9],[10].These to algorithms are used 
along with the proposed algorithm to compare 
the result. 

 This paper also gives fingerprint 
compression based on sparse representation [11]. 
It includes construction of dictionary, each 
column of dictionary is known as atom. 
Fingerprint are divided into small blocks called 
patches, whose dimension is equal to atom size. 
Coefficients are obtained by using method of 
sparse representation. These coefficients are 
quantized and entropy encoded.  

 Performance is measured using Peak 
Signal to Noise Ratio (PSNR) and Compression 
Ratio. High PSNR indicates that the 
reconstructed image retained more components 
after compression. Compression Ratio indicates 
number of bits required to represent fingerprint 
after compression as that of original.  

II. SPIHT algorithm 

The SPIHT algorithm is a more efficient 
algorithm which was presented by Shapiro [12]. 
The   SPHIT algorithm includes following steps: 
initialization, sorting pass, refinement pass, 
quantization and step update pass. 

After applying wavelet transform to an image, 
the SPIHT algorithm divides the coefficients into 
significant and insignificant partitions based on 
the following function: 

ܵሺܶሻ ൌ 	 ൜
ሼหܿ,หሽ	ሺ,ሻఢ்ݔܽ݉			,1  2

݁ݏ݅ݓݎ݄݁ݐ																									,0
… (1) 

Where ܵሺܶሻ is the significance of a set of 
coordinates T, and  ܿ, is the coefficient value at 
coordinates (i, j). There are two passes in the 
algorithm sorting pass and the refinement pass. 
The SPIHT encoding process consist of three 
lists: 

LIP (List of Insignificant Pixels) – it contains 
individual coefficients that have values smaller 
than thresholds. 

LIS (List of Insignificant Sets) – it consist of 
group of coefficients that are defined by tree 
structures and are found to have magnitudes less 
than the threshold.  

LSP (List of Significant Pixels) – it consist of 
coefficients larger than the threshold. 

Initialization: In this stage threshold N, LSP, 
LIP, LIS are initialized.  Threshold is initialized 
as given in equation (2). Therefore LSP becomes 
empty, LIP consist of pixels less than the 
threshold N, and LIS consist of set of pixels less 
than threshold N. After initialization algorithm 
iteratively repeats by decreasing threshold N as 
N/2. 

݊௫ ൌ ሾ݈݃ଶሺ݉ܽݔ,ሼ|ܿ, |})]……… (2) 

Sorting pass: The purpose of sorting pass is to 
manipulate the contents of LIP, LSP, LIS, so that 
they are correct with respect to the current 
threshold. During sorting pass, coordinates of the 
coefficients remain in LIP are tested for 
significant. The result is sent to output and out of 
it the significant will be transferred to the LSP as 
well as sending sign bit to the output. Sets in LIS 
also tested for significant, if that found to be 
significant, it will be removed and partitioned 
into subsets. Subsets with only one coefficient 
and found to be significant, will be eliminated 
and divided into subsets. Subsets having only 
one coefficient and found to be significant will 
be inserted to the LSP, otherwise they will be 
inserted to the LIP. 

Refinement pass: The refinement pass follows 
the sorting pass and gives out the bit 
corresponding to the current value of threshold 
for each of pixels in the LSP which were not 
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added in the immediately previous sorting pass. 

In this pass, the n୲୦  MSB of the coefficients in 
the LSP is passed to the output. 

In Quantization and Step update pass, the value 
of threshold N decremented as N/2. The sorting 
and refinement pass is been repeated until 
threshold N reaches to zero and all nodes in the 
LSP have all their bits output. The latter case will 
give an almost exact reconstruction since all the 
coefficients have been processed completely. 

The bit rate can be controlled exactly in the 
SPIHT algorithm as the output produced is in 
single bits and the algorithm can be finished at 
any time. The decoding process follows the 
encoding exactly and is almost symmetrical in 
terms of processing time. 

III. WSQ ALGORITHM 
A simplified block diagram of WSQ is given in 
figure 1. The algorithm consist of three main 
steps: decomposition of original fingerprint by 
applying discrete wavelet transform, these 
wavelet coefficients are quantized using uniform 
scalar quantization, and these quantized 
coefficients are entropy encoded.  
 In WSQ encoder, the original fingerprint 
is decomposed into 64 subbands of wavelet 
coefficients by applying discrete wavelet 
transform with level 5 as shown in figure 2. 
These subbands are quantized using adaptive 
uniform scalar quantization technique. 
Quantization coefficient of ݇௧subband 
ܽሺ݉, ݊ሻ is given by the equation (3). 

,ሺ݉ ݊ሻ ൌ

ە
ۖ
۔

ۖ
ቔۓ

ೖሺ,ሻିሺ.	ொೖሻ

ொೖ
ቕ  1				; 	ܽሺ݉, ݊ሻ  0.6	ܳ

0	; 	 െ 0.6	ܳ  ܽሺ݉, ݊ሻ  0.6	ܳ

ቒೖ
ሺ,ሻାሺ.	ொೖሻ

ொೖ
ቓ െ 1; ܽሺ݉, ݊ሻ ൏ 0.6	ܳ

	(3) 

At the decoder, the de-quantization of a 
quantized coefficients are computed using 
equation (4). 

ậܽ ൌ ൞

൫ሺ݉, ݊ሻ	 െ ൯ܳܥ  ൫0.6	ܳ൯; ,ሺ݉ ݊ሻ  0

0																																																					; ,ሺ݉ ݊ሻ ൌ 0
ሺሺ݉, ݊ሻ  ሻܳܥ െ ൫0.6	ܳ൯; ,ሺ݉ ݊ሻ ൏ 0

 ….(4) 

Where ܽሺ݉, ݊ሻ is wavelet coefficient of ݇௧ 
subband, ܳ represents Quantization table value 

of ݇௧ subband, C determines quantization bin 
width, 

ܳ=൞

,ݍ/1 																																																																	݇ ൌ 4	ݐ	1

10/ሺܣݍ logሺߪ
ଶሻሻ, 			݇ ൌ ߪ	݀݊ܽ	60	ݐ	5

ଶ  1.01		
0, 																																			݇ ൌ ߪ	ݎ	64	0ݐ	61

ଶ ൏ 1.01

(5) 

Where ߪ
ଶ is variance of ݇௧subband and q can 

be set to get prespecified compression ratio and 
  . given by equation (6)ܣ
        Quantized coefficients are entropy encoded 
using run length encoding method followed by 
Huffman encoding. Run length encoding is done 
according to the conditions given in table 2. 

ܣ ൌ

ە
ۖ
۔

ۖ
,1.32ۓ 	݇ ൌ 53,57

1.08, 	݇ ൌ 54,59

1.42, 	݇ ൌ 55,58

1.08, 	݇ ൌ 56,60

1.00, ݁ݏ݅ݓݎ݄݁ݐ	

                                     ..... (6) 

Coefficient values are mapped to the 
symbols according to Table 2. After run length 
coding the symbols are grouped into three and 
Huffman encoding is applied to each group 
separately. 

 

 

 

 

 

Figure 1. Simplified WSQ encoder and decoder 
block diagram 
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Figure 2. WSQ standard DWT decomposed sub 
bands 

IV. SPARSE ALGORITHM 

Sparse algorithm includes construction of the 
dictionary, sparse encoding, quantization and 
entropy coding. The simplified flow diagram of 
sparse algorithm is shown Figure 3. 

A. Construction of dictionary  

Fingerprint image is divided into patches with 
equal size. Initially dictionary is empty and first 
patch is added to the dictionary. Next patch is 
tested whether it is similar to the patch present in 
the dictionary by using similarity measure 
equation (7). 

ܵሺܲ1, ܲ2ሻ ൌ ݉݅݊ ฯ
ଵ

‖ଵ‖ಷ
మ 	 െ ݐ ∗ ଶ

‖ଶ‖ಷ
మฯ

ி

ଶ

                      

….. (7) 
Where  ‖∙‖ி

ଶ  represents Frobenius norm, P1, P2 
indicates patches used for similarity measure and 
t is a scaling factor.  
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1 

2 

3 
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179 

Zero run of length 1 

Zero run of length 2 

Zero run of length 3 

. 

. 

Zero run of length 100 

Escape for positive 8 bit coefficient 

Escape for negative 8 bit coefficient 

Escape for positive 16 bit 

coefficient  

Escape for negative 16 bit 

coefficient  

Escape for 8 bit zero run 

Escape for 16 bit zero run 

Coefficient value -73 

Coefficient value -72 

. 
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. 

. 
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. 

Coefficient value -1 

(same as symbol 1) 

Coefficient value 1 

. 

. 

Coefficient value 73 

Coefficient value 74 

Table 2: Huffman coding model [13] 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. Simplified block diagram of sparse 
algorithm 

If patch under test is similar to any 
patches in the dictionary, then atom number 
corresponding to that patch is stored. Otherwise 
the patch under test is added to the dictionary. In 
this work, dictionary is constructed in two 
methods and they are described below. 

1. Dictionary based on Random Select: In this 
method, selection of fingerprint patches is 
done randomly and these randomly selected 
patches are arranged as columns of 
dictionary matrix [11]. 

2. Dictionary based on K-SVD: K-SVD is a K- 
means Singular Value Decomposition 
algorithm. It is a dictionary learning 
algorithm using K- means clustering method 
[16].K-SVD algorithm finds sparse 
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coefficients and updates the dictionary atoms 
alternatively. 

The dictionary is obtained by iteratively solving 
an optimization problem (6) using Orthogonal 
Matching Pursuit (OMP) method. 

ฮܻ	 െ ฮܺܦ 	, ,݅∀		ݐ݄ܽݐ	݄ܿݑݏ ‖ ܺ‖ ൏ ܶ	ி

ଶ

,


                ….. (6) 

where Y represents column of patch, A 
represents a dictionary, X represents sparse 
coefficient and T is sparsity constraint.  
B. Sparse encoding and updating dictionary 

For current dictionary sparse coefficients ݔ  

are calculated by solving equation (8) 
Orthogonal Matching Pursuit (OMP) method. 
Then the dictionary column ݀  is updated for 
given	ݔ. Set ω  such that it contains non-zero 
coefficients of	ݔ and overall error matrix is 
computed by using equation (9). 

ܧ ൌ ܻ െ 	∑ ்ܺܦ


ஷ                                             …. (9) 

ܧ is chosen to obtain	 corresponding to ωܧ
?், 

then SVD decomposition is applied asܧ
ோ= 

UΔVT, then the first column of U is chosen as 
updated dictionary column ݀, then updated the 
coefficient vector ݔ as first column of V 
multiplied by Δ(1,1). Thus sparse encoding and 
updating of dictionary are done alternatively. 

C. Quantization and entropy encoding 

 Sparse coefficients are quantized using 
uniform quantization and these quantized 
coefficients are encoded using Huffman 
encoding to get compressed bit stream. 

 
V. EXPERIMENTS AND RESULTS 

This section describes the experiments on 
different fingerprints. First the databases used for 
this study has been described. Experimental 
result for different dictionary methods is given. 
Next, experimental result for different patch 
sizes are described. Then comparison between 
different three algorithms that is SPARSE, 
SPIHT, WSQ is been described. 
A. Databases used 

There are 4 groups of fingerprints are used in 
this experiments namely: 
 DATABASE 1: The public fingerprint 

database FVC2000: DB1(B), DB2(B), 

DB3(B), and DB4(B) with 10 persons each 
with 8 samples per person thus total of 320 
fingerprints. 

 DATABASE 2: the public fingerprint 
database FVC2002: DB1(B), DB2(B), 
DB3(B), and DB4(B) with 10 persons each 
with 8 samples per person thus total of 320 
fingerprints. 

 DATABASE 3: The public fingerprint 
database FVC2002: DB1(B), DB2(B), 
DB3(B), and DB4(B) with 10 persons each 
with 8 samples per person thus total of 320 
fingerprints. 

 DATABASE 4: The MSRIT_ec fingerprint 
database with 100 persons with 10 samples 
per person thus total of 1000 fingerprints. 

B. Experimental result for different dictionary 
methods 
In this section, the effects of different 

dictionary methods on fingerprint compression is 
studied. First method is selecting the patches 
randomly, and arranged them as columns of 
dictionary and second method to train the 
dictionary using KSVD method. These methods 
are tested for DATABASE3 with patch size = 12 
× 12. In this experiment PSNR is computed from 
equation (10) and CR (Compression Ratio) from 
equation (11). 

PSNR = 10*݈݃ଵ
ଶହହ^ଶ

ெௌா
                               ….. (10) 

Where, MSE is Mean Square Error which 
defined as 

MSE = 
ଵ

ெ∗ே
	 ∑ ∑ ሾܺሺ݉, ݊ሻ െ ܻሺ݉, ݊ሻሿଶ	ேିଵ

ୀ
ெିଵ
ୀ        ….. (11) 

Where, X (m, n) represents Original Image and 
Y (m, n) represents Reconstructed image, M and 
N indicates number of rows and column in the 
image respectively. 

ܴܥ ൌ ே௨		௧௦		ை	ூ

ே௨		௧௦		௦௦ௗ	ூ
                      ….. (12) 

Figure 4 and table 3 represents performance of 
proposed algorithm under different dictionary 
methods. Vertical axis indicates average PSNR 
values for different compression ratios indicated 
in horizontal axis. Experimental results shows 
that KSVD method performs better compared 
Random select method. Therefore KSVD 
method is used for further experiments. 
C. Experimental result for different patchsizes 
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This section describes experimental results 
for different patch sizes 8 × 8, 10 × 10, 12 ×12, 
16 × 16 are described. Figure 5 shows the 
dictionary with patch size of 12×12. Figure 6 and 
table 4 represents average performance of sparse 
algorithm under different patch sizes for 
DATABASE1. 
 

CR 

PSNR(dB) 

KSVD 
Random 
Select 

20 33.2 31.87 
22.5 32.52 31.42 
25 32.03 31.06 

27.5 31.62 30.91 
30 31.27 30.58 

32.5 30.91 30.39 
35 30.53 30.12 
40 30.1 28.3 

Table 3: performance of proposed algorithm for 
different Dictionary methods for DATABASE3. 

 
Figure 4. Performance of sparse algorithm 

under different dictionary method for 
DATABASE3. 

 
Figure 5 Dictionary with patch size = 12×12 
 

Figure 7 and table 5 represents average 
performance of sparse algorithm under different 
patch sizes for DATABASE 2. Figure 8 and table 
6 represents average performance of sparse 
algorithm under different patch sizes for 
DATABASE 3. Figure 9 and table 7 represents 
average performance of sparse algorithm under 
different patch sizes for DATABASE 4. Vertical 
axis indicates average PSNR values for different 
compression ratios indicated in horizontal axis. 
Experimental results shows that 8×8, 10×10 
performs better compared to patch sizes of 
12×12, 16×16  but it consumes more time for 
compression and decompression. Therefore 
patch size of 12×12 is used further in our 
experiments. 

CR 
PSNR(dB) 

8*8 10*10 12*12 16*16 
20 32.8 32.45 32.23 31.86 

22.5 32.297 32.18 31.83 31.51 
25 31.75 31.55 31.22 31.18 

27.5 31.15 31.08 30.97 30.76 
30 30.68 30.65 30.41 30.17 

32.5 30.02 30.16 30.19 30.16 
35 29.995 30.12 30.155 30.157
40 28.44 28.23 28.43 28.33 

Table 4 represents average performance of 
sparse algorithm under different patch sizes for 

DATABASE 1. 

 
Figure 6 represents performance of sparse 
algorithm under different patch sizes for 

DATABASE 1. 

CR 
PSNR(dB) 

8*8 10*10 12*12 16*16
20 33.69 33.45 33.28 33.04 

22.5 33.26 33.13 33.02 32.83 
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25 32.73 32.45 32.24 32.11 
27.5 32.32 32.09 31.23 31.23 
30 31.68 31.55 31.14 31.14 

32.5 31.16 31.18 31.19 31.21 
35 30.82 31.01 31.04 31.13 

Table 5 represents performance of sparse 
algorithm under different patch sizes for 

DATABASE 2. 
 

D. Comparison different compression 
algorithms 
This section describes comparison between 
Sparse, SPIHT, WSQ algorithms.  

 
Figure7 represents performance of sparse 
algorithm under different patch sizes for 

DATABASE 2. 
 

  
CR 

PSNR(dB) 
8*8 10*10 12*12 16*16 

20 33.94 33.35 33.14 32.98 
22.5 33.27 33.04 32.87 32.51 
25 32.86 32.76 32.35 32.013

27.5 32.21 32.27 32.23 31.63 
30 31.65 31.45 31.21 31.13 

32.5 31.16 31.15 30.87 30.81 
35 30.88 30.92 30.94 30.96 

Table 6 represents performance of sparse 
algorithm under different patch sizes for 

DATABASE 3. 

 
Figure 8 represents average performance of 

sparse algorithm under different patch sizes for 
DATABASE 3. 

  
CR 

PSNR(dB) 
8*8 10*10 12*12 16*16

20 32.83 32.45 32.21 31.85 
22.5 32.31 32.04 31.87 31.53 
25 31.87 31.54 31.23 31.09 

27.5 31.35 31.13 31.09 30.98 
30 30.54 30.22 30.13 30.06 

32.5 30.11 30.04 29.98 29.99 
35 29.96 29.97 29.96 29.97 

 
Table 7 represents performance of sparse 
algorithm under different patch sizes for 

DATABASE 4. 

 
Figure 9 represents performance of sparse 
algorithm under different patch sizes for 

DATABASE 4. 

 
CR 

PSNR(dB) 
Sparse WSQ SPIHT 

20 32.23 31.34 32.25 
22.5 31.83 30.96 31.81 
25 31.22 30.42 31.17 

27.5 30.97 30.05 30.72 
30 30.41 29.99 30.23 

32.5 30.19 29.62 29.83 
35 30.155 29.25 29.71 
40 28.7 27.1 27.33 
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Table 8 represents performance of SPARSE, 
WSQ, SPIHT algorithms for DATABASE 1. 

 

Figure 10 represents performance of SPARSE, 
WSQ, SPIHT algorithms for DATABASE 1. 

  
CR 

PSNR(dB) 
Sparse WSQ SPIHT

20 33.28 32.54 33.43 
22.5 33.02 32.13 33.07 
25 32.24 31.42 32.21 

27.5 31.23 31.07 31.17 
30 31.14 30.31 30.92 

32.5 31.19 29.93 30.55 
35 31.04 29.48 30.24 

 
Table 9 represents performance of SPARSE, 
WSQ, SPIHT algorithms for DATABASE 2. 

 

Figure 11 represents performance of SPARSE, 
WSQ, SPIHT algorithms for DATABASE 2. 

  
CR 

PSNR(dB) 
Sparse WSQ SPIHT

20 33.14 33.136 33.23 
22.5 32.87 32.854 32.92 
25 32.35 32.313 32.336

27.5 32.23 32.217 32.227
30 31.21 31.026 31.13 

32.5 30.87 30.743 30.52 
35 30.44 30.298 30.32 

 
Table 10 represents performance of SPARSE, 
WSQ, SPIHT algorithms for DATABASE 3. 

 

Figure 12 represents performance of SPARSE, 
WSQ, SPIHT algorithms for DATABASE 3. 

Figure 10 and table 8 represents average 
performance of SPARSE, WSQ, SPIHT 
algorithms for DATABASE 1. Figure 10 and 
table 6 represents average performance of 
SPARSE, WSQ, SPIHT algorithms for 
DATABASE 2. Figure 11 and table 6 represents 
average performance of SPARSE, WSQ, SPIHT 
algorithms for DATABASE 3. Figure 12 and 
table 7 represents average performance of 
SPARSE, WSQ, SPIHT algorithms for 
DATABASE 4.  

 Vertical axis indicates average PSNR values 
for different compression ratios indicated in 
horizontal axis. Experimental results shows that 
SPARSE algorithm performs better than SPIHT 
and WSQ in most of the cases. But due to the 
complexity of SPARSE algorithm, it takes more 
processing time compared to SPIHT and WSQ.  
Figure 14, 15, 16 shows sampled result for 
SPARSE, SPIHT, WSQ algorithms. 

  
CR 

PSNR(dB) 

Sparse WSQ SPIHT 
20 31.43 30.32 31.17 

22.5 30.22 29.51 30.26 

25 29.53 28.72 29.12 

27.5 28.21 27.17 28.44 
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30 27.83 26.53 27.72 

32.5 27.04 26.03 26.92 

35 25.65 25.42 25.63 
Table 11 represents performance of SPARSE, 
WSQ, SPIHT algorithms for DATABASE 4. 

 

Figure 13: represents performance of SPARSE, 
WSQ, SPIHT algorithms for DATABASE4.

 

(a)                                     (b)                                          (c)                                      (d) 

Figure 14:(a) Original image 101_1 from FVC2002_DB1B,(b) sparse output with PSNR = 33.95 
dB, (c) WSQ output with PSNR = 31.72dB, (d) SPIHT output with PSNR = 32.77 dB at 

compression ratio 30:1 

 

(a)                                (b)                                   (c)                                 (d) 
Figure 15:(a) Original image 101_2 from FVC2002_DB1B, (b) Sparse output with PSNR = 

30.04dB, (c) WSQ output with PSNR = 20.38dB, (d) SPIHT output with PSNR = 29.17dB at 
compression ratio = 35:1 

 
(a)                                        (b)                                         (c)                                      (d) 

Figure 16: (a) Original image 11_10 from DATABASE4, Reconstructed image (b) with sparse, 
PSNR = 29dB (c) with WSQ, PSNR = 21.32dB (d) with SPIHT, PSNR = 28.96dB. 
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VI. CONCLUSION AND FUTURE WORK 
Fingerprint compression using SPARSE, SPIHT 
and WSQ algorithm has been described. 
Experiments are conducted on four set of 
databases. Dictionary is constructed using 
Random select and K-SVD. Experimental results 
shows that the Dictionary Construction based on 
K-SVD performs better than Random select 
method. Experiments are conducted on different 
patch sizes, patch size of 12 × 12 gives better 
performance compared to other patch sizes. The 
proposed algorithm is also compared with 
SPIHT and WSQ. The Experimental results 
show that proposed algorithm outperforms 
SPIHT and WSQ in most of the cases. 
 As a future work optimization algorithm 
for solving sparse representation need to be 
investigated, complexity and processing time of 
the code is need to be reduced. Improvement 
quantization and entropy encoding part. 
Different method for constructing dictionary can 
used to yield better result. 
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