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Abstract 
The goal of data mining is to discover 
knowledge and reveal new, interesting and 
previously unknown information to the user. 
Association rule mining forms an important 
research area in the field of data mining. 
Association rules discovers patterns and 
correlations that may be buried deep inside a 
database. They have therefore become a key 
data-mining tool and it has been well 
researched. Many algorithms have been 
proposed to find association rules in 
databases with binary and categorical 
attributes. However many real world 
databases are in quantitative nature and the 
current solutions for this kind of databases 
are so far inadequate. A satisfactory solution 
would be of great benefit to many fields. 
 
This paper is aimed at proposing new 
algorithms for mining association rules on 
the quantitative data. We are proposing a 
new method for deriving the association 
rules on the quantitative data by using 
apriori algorithm, Clustering and fuzzy set 
concepts. The association rules of 
quantitative data are represented in two 
independent ways, one is with statistical 
terms namely Mean and Standard 
Deviation, and another way is with fuzzy 
linguistic terms. The Statistical Association 
rule consists of quantitative attributes along 
with the corresponding Mean and Standard 
Deviation. The representation of the rules 
was done by means of statistical terms as 
they can describe the behaviour of 
quantitative attributes better than the 
existing methods and the theory of fuzzy sets 
can be used over relational databases to 

discover useful, meaningful patterns. We 
proposed a new approach to infer fuzzy 
association rules from the quantitative data, 
which is fully different from the earlier 
approaches. A case study was done on the 
Commodity Export data. The data is 
collected by DGCIS (Directorate General of 
Commercial Intelligence and Statistics) and 
available at Reserve Bank of India (RBI) 
data warehouse, known as Central Database 
Management System (CDBMS). For our 
work, we have received the data from 
CDBMS. 

 
1.1 Introduction 

There are many challenging problems in 
data mining. One of them includes finding 
association rule mining. Association rule 
mining includes another problem which is 
frequent set generation even after existence of 
different types of algorithms to find out the 
association rules in given databases. There is a 
great need of designing efficient and effective 
algorithms in data mining. What does it mean 
by Association Rule Mining? Before answering 
this question. We need to answer another 
question. What does it exactly mean by 
frequent set? A frequent set is set which occurs 
certain number of times in the dataset. After 
finding all frequent sets we will generate some 
interesting rule in the form of IF-THEN rules, 
these rules are noting but association rules. 
Through which we will generate information 
from the database or warehouse which we 
stored over years. 

 
Decision makers use this information to make 
effective decisions. To make profits by 
analyzing the existing user data. Our analysis 
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leads to interesting patterns through which 
decision makers will provide frequently used 
items to the users through which marketers will 
end up with the profits. But the main problem 
comes here is designing effective algorithms 
which can take large data set as input and 
provide output within time. So it is the 
responsibility of the designer to make sure that 
the algorithms should meet the needs of the 
decision maker. The main part of the algorithm 
is to deal with the subsets generated by the 
algorithm. As the subset generation problems is 
NP-COMPLETE so it not feasible to design an 
algorithm which will end up with exponential 
time complexity. Our algorithm should be 
optimal in terms of Time complexity and Space 
complexity and work better over existing 
algorithms. Even the existing algorithms such 
as apriori and it's variations will lead to an 
exponential algorithm. Due to the exponential 
time complexity of these algorithms we have to 
go for another algorithm for a better solution. 
The main objective of this project is to 
overcome the worst-case exponential time 
complexity of existing algorithms through 
designing a new algorithm. 
 
2.1 Background 
The concept of Association rule mining is 
introduced by Apriori Algorithm (Agarwal & 
Srikanth, 1994). It works following a breadth 
first search strategy first, for each feature, all 
frequent similar values (frequent similar 
subdescriptions with only one feature), are 
determined first. Combining frequent similar 
patterns of length 1, candidates to frequent 
similar patterns of length 2 are obtained. 
Afterwards, for each pair (Pi,- Pj) of frequent 
similar subdescriptions with k-1 features, found 
in the iteration k -1, if Pi and Pj have a common 
subdescription with k-2 features, they are 
combined in order to create a new candidate 
subdescription P* with k features . 

In Agrawal and Srikant (1994) a fast 
algorithm for generating interesting association 
rules from frequent patterns is described. This 
algorithm is based on the following property. 
For each frequent pattern, if the confidence of 
the rule X → Y obtained by separating its 
features in two disjoint subsets is less than a 
specified minimum confidence threshold, then 
the confidence of all rule X-Z → YZ, where Z 
is a sub pattern of X, is also less than the 
specified minimum threshold. As a 

consequence of this property, if a rule X → Y is 
not interesting then all rules X- Z → YZ, where 
Z is a sub pattern of X, are also not interesting, 
and it is not necessary verifying their 
confidence. In the fast algorithm, for each 
frequent pattern, first all rules with only one 
feature in the consequent and the remaining 
features in the antecedent are generated. Later, 
for each rule, the features of the antecedent are 
recursively moved to the consequent and thus 
new rules are generated, until the confidence of 
the rule become less than the minimum 
confidence threshold. 

Other algorithms for generating 
interesting association rules from frequent 
patterns have been reported in the literature, 
however they are designed for specific kinds of 
associations rules or domains (Ayubi, Muyeba, 
Baraani, & Keane, 2009; Chen & Wei, 2000; 
Choi & Hyun, 2010; Li-Min, Shu-Jing, & Don-
Lin, 2010;Ya-Han & Yen-Liang, 2006). 
 
2.2 Definitions 
Association Rule Mining: Finding interesting 
relationships in among items 
Measures of rule interestingness: association 
rules are considered interesting if they satisfy 
both a minimum support threshold and a 
minimum confidence threshold. 
Let I = {I1 , I2 , . . . , Im } be a set of items. 
Let D, the task-relevant data, be a set of 
database transactions where each transaction 
T is a set of items such that T ⊆ I . An 
association rule is an implication of the form 
A ⇒ B, where A ⊂ I , B ⊂ I , and A ∩ B = φ. 
 
Support: Percentage of transaction D that 
contain  
                 A ∪ B support(A⇒ B) = P(A ∪ B) 
Confidence:the percentage of transactions in D 
containing A that also contain B 

support A ∪ B 
 support A 

Additional interestingness measures can be 
applied for the discovery of correlation 
relationships  between associated items. 
Association rule mining can be viewed as a 
two-step process: 

1. Find all frequent itemsets: By 
definition, each of these itemsets will 
occur at least as frequently as a 
predetermined minimum support count, 
min sup. 
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2. Generate strong association rules from 
the frequent itemsets: By definition, 
these rules must satisfy minimum 
support and minimum confidence. 

 
Classification Of Association Rule Mining: 

There are many kinds of frequent 
patterns, association rules, and correlation 
relationships. Frequent pattern mining can be 
classified in various ways, based on the 
following criteria: 

1. Based on the types of values handled in 
the rule 
➢ Boolean association rule 
➢ Quantitative association rule 

2. Based on the kinds of rules to be mined 
➢ Association rules 
➢ Correlation rules 
➢ Strong gradient relationships 1 

3. Based on the number of data 
dimensions involved in the rule 
➢ Multidimensional association rule 

4. Based on the levels of abstraction 
involved in the rule set 

➢ Multilevel association rules 
➢ Single-level association rules 

5. Based on the kinds of patterns to be 
mined 
➢ Frequent itemset mining 
➢ Sequential pattern mining 
➢ Structured pattern mining 

 
3. Frequent Subset Generation Problem 

The frequent subset generation problem 
includes given a list of transactions with n 
distinct items we need to find a frequent set 
among them. To solve this problem we need to 
scan through the data set and  count  how many 
number of times it is present in dataset and then 
we need to check that the subsets are satisfying 
the minimum support constraint are not. If they 
satisfy the constraint then we can find the 
frequent set. The main problem comes with the 
space complexity in this problem is even if we 
provide the input as all possible combination 
for a given set of items. We require exponential 
space. If space complexity is not a problem. 
Algorithm steps will increase exponentially so 
finally we end up with a exponential problem. 
We have different sort of approaches to solve 
this problem in the next chapter we are going to 
discuss a brute-force algorithm, apriori 
Algorithm and several experimental algorithm 
we've tried to solve the problem. Each 

Algorithm has been explained with an example. 
Moreover in designing a solution to this 
problem we will make sure that the each and 
every approach we are going to check is 
mathematically complete and optimal. In the 
process of designing the algorithm we have 
encountered many problems. Even then we 
have improved the performance of the 
algorithm and designed a remedy for each 
problem 
 
4. Implementation of Algorithms 

There are different types of algorithm 
to solve the problem of frequent set generation. 
Apriori and it's variations work effectively in 
almost all cases. In this chapter before going to 
the Apriori algorithm we will discuss Brute-
force approach to solve the problem. Then 
after we will go for the apriori algorithm. At 
the end we will discuss our experimental 
algorithms. 
4.1 The Brute-force Approach: 

In this approach all possible subsets of 
set of distinct items in a transaction set. And 
check if any one them is frequent by comparing 
with each and every transaction. As it is known 
already that the brute-force approaches lead to 
exponential time it is not preferable. 
Pseudo-code for Brute-force approache:  
input:Transaction T, minimum support 
min_sup  
output:Frequent set FS 
begin 
1. Generate all possible subsets S of 

Transaction T. 
2. while each subset s ϵ S 
3. sup=support(s) 
4. ifsup>=min_sup 
5. add s to FS 
6. elsediscard the subset 
7. end while 
8. Find Maximal Frequent Item Sets2 from 

FS 
9. Generate Rules for Maximal Frequent 

Item Set 
end 
 
Drawbacks: 

In this method if d distinct items are 
present in transaction then 2d -1 Subsets need 
to be generated for which computation time 
increases exponentially with increase in d. This 
is the main pitfall of this method. 
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4.2 The Apriori Algorithm: 
The name of the algorithm is based on 

the fact that the algorithm uses prior knowledge 
of frequent itemset properties. Apriori employs 
an iterative approach known as a level-wise 
search, where k-itemsets are used to explore (k 
+ 1)-itemsets. First, the set of frequent 1-
itemsets is found by scanning the database to 
accumulate the count for each item, and 
collecting those items that satisfy minimum 
support. The resulting set is denoted Lv1 . 
Next, L1 is used to find L2 , the set of frequent 
2-itemsets, which is used to find L3 , and so on, 
until no more frequent k-itemsets can be found. 
The finding of each Lk requires one full scan of 
the database. 

To improve the efficiency of the level-
wise generation of frequent itemsets, an 
impor-tant property called the Apriori 
property is used to reduce the search space. 
We will first describe this property, and then 
show an example illustrating its use. 
 
Apriori property: All nonempty subsets of a 

frequent itemset must also be frequent. 
This property is used in the algorithm by 
using two step process: 

1. The join step:To find Lk , a set of 
candidate k-itemsets is generated by 
joining Lk −1 with itself. This set of 
candidates is denoted Ck . 

2. The prune step: Ck is a superset 
of Lk , that is, its members may or may 
not be frequent, but all of the frequent 
k-itemsets are included inCk all 
candidates having a count no less than 
the minimum support count are frequent 
by definition, and therefore belong to 
Lk . 

 
 
Pseudo-Code of Apriori Algorithm: 

To improve the efficiency of apriori 
algorithm there are certain variations 
 
1.Hash-based technique:A hash-based 
technique can be used to reduce the size of the 
candidate k-itemsets, Ck , for k > 1. For 
example, when scanning each transaction in the 
database to generate the frequent 1-itemsets, L1 
, from the candidate 1-itemsets in C1 , we can 
generate all of the 2-itemsets for each 
transaction, hash (i.e., map) them into the 
different buckets of a hash table structure, and 

increase the corresponding bucket counts . A 2-
itemset whose corresponding bucket count in 
the hash table is below the support 
 
2.Transaction reduction :A transaction that 
does not contain any frequent k-itemsets cannot 
contain any frequent (k + 1)-itemsets. 
Therefore, such a transaction can be marked or 
removed from further consideration because 
subsequent scans of the database for j-itemsets, 
where j > k, will not require it. 
 
3.Partitioning :A local frequent itemset may 
or may not be frequent with respect to the 
entire database, D. Any itemset that is 
potentially frequent with respect to D must 
occur as a frequent itemset in at least one of the 
partitions. Therefore, all local frequent itemsets 
are candidate itemsets with respect to D. The 
collection of frequent itemsets from all 
partitions forms the global candidate itemsets 
with respect to D. In Phase II, a second scan of 
D is conducted in which the actual support of 
each candidate is assessed in order to determine 
the global frequent itemsets. Partition size and 
the number of partitions are set so that each 
partition can fit into main memory and 
therefore be read only once in each phase. 
 
4.Sampling: The basic idea of the sampling 
approach is to pick a random sample S of the 
given data D, and then search for frequent 
itemsets in S instead of D. In this way, we 
trade off some degree of accuracy against 
efficiency. The sample size of S is such that the 
search for frequent itemsets in S can be done in 
main memory, and so only one scan of the 
transactions in S is required overall. Because 
we are searching for frequent itemsets in S 
rather than in D, 

1 F1 = {frequent 1-itemsets} 
2 For (k = 2; Fk-1 ≠ 0; k++) loop
3 Ck = generate (Fk-1); 
4 For all transactions x ∈ D loop 

5 
Cx = generate_subset (Ck, x); 
//candidate generation; 

6 For all candidates c ∈ Cx loop 
7 c.count++ 
8 end loop; 
9 end loop; 

10 Fk = { c ∈ Ck | c.count ≥ minsup} 
11 end loop;
12 Return ∪k {Fk} 
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it is possible that we will miss some of the 
global frequent itemsets. 
5.Dynamic itemset counting :A dynamic 
itemset counting technique was proposed in 
which the database is partitioned into blocks 
marked by start points. In this variation, new 
candidate itemsets can be added at any start 
point, unlike in Apriori, which determines new 
candidate itemsets only immediately before 
each complete database scan. The technique is 
dynamic in that it estimates the support of all 
of the itemsets that have been counted so far, 
adding new candidate itemsets if all of their 
subsets are estimated to be frequent. The 
resulting algorithm requires fewer database 
scans than Apriori. 
Example 1.1: 
Item Sets TID sets 

1 T1,T4,T5,T8,T9 
2 T1,T2,T3,T4,T6,T8,T9 
3 T3, T5, T6, T7,T8, T9 
4 T2,T4 
5 T1,T8 

 
Implementation of apriori algorithm: 
minimum support threshold=3 

C1  l1  C2 

 
L2   C3 

 
 
 
 
  Figure 4.1 Apriori Example 
 
There are no C3 items satisfying minimum 
support threshold we stop with sets {T1,T8} , 
{T8,T9}. 
Disadvantages: 

This algorithm will lead to a 
exponetial time complexity in worst-case 
and it will generate 2^d-1 subsets which is 
not optimal. 
Solution to This Problem: 

Rather than generating the frequent sets 
sequentially start searching the frequent set by 
using bisection method which will be 
completed in log n steps. 
Bisection Method: 

This method logic is similar to Binary 
search method. In a sorted sequence if we 
would like to find out the a number we directly 
go to middle of array and we compare with the 
middle element and if it is greater than 
searching element we proceed further if not we 
proceed lower half. This will Take log n steps. 
Based on method we would like to present  
 
4.3 Experimental Algorithm 1: 

The main motivation of this algorithm 
is to overcome the problem of exponential time 
complexity through reducing the number of 
steps. As power set size is n the there will be 
2^n sub sets we can align the increasing order 
with respective their size. 
Ex: consider a 5 element set and Tree 
generated through brute-force algorithm to find 
all sub sets of the set. The tree generated has 
32 nodes. 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.2 Power Set 
 
In this algorithm we use bisection method to 
find the frequent set in generated tree. The 
advantage of this algorithm of it will find the 
frequent set in log n number of steps through 
either selecting only upper portion of the tree or 
lower portion of the tree.  The bisection method 
is mathematical method to find roots this 
method is also used in binary search method 
that why the binary search time complexity is 
logn. 
Input: Dataset, min_support  
Output: Frequent Set begin: 
 

1. N= no. of distinct items 
2. find substest of size-1 
3. support-1= find support of size-1 subsets 
4. if max(support-1)>=min_support 
5. S=subset of size-N 
6.       if (support(S)>=min_support) 
7.             Frequent Set = S 
8.       else 
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9. low=1 
10. high=N 
11. mid=┌(low+high)/2┐ 

12 for i in range 1 to logN 
13.        S=subsets of size-mid 
14.       support= support(S) 

15.       if max(support)<min_support 
16.            high=mid 
17.             mid=┌(low+high)/2┐ 

18.      else 
19.              low=mid; 
20.             mid=┌(low+high)/2┐ 

21. 
          Index=index of subset with 
max(support) in S 

22.           Frequent Set=S(index) 
 
23.      end 
24.    end 
25. end 
26. end 
27. end 

 
 

 
 

 

Fig. 4.3:subsets in tree 
 

In the above example consist of five distinct 
elements and there will five different size sub 
sets in tree. We need to count the number of 
different subsets present in tree. 
 
Step 1: compute support of size 1 and size n 
Size 1 is satisfying the minimum support but 
not size n=7 is not satisfying the minimum 
support. 
 
Step2: as n=7 is not satisfying the support we 
will jump to n=7/2=3.5 we need to take lower 
bound on this. Then we will get              3. The 
data Items that satisfying the minimum support 
are T1,T4,T8,T9 we need form all the subsets 
of size three with these Items They are 

 
Step 3: We didn't find a set which can satisfy 
our minimum support with size three.then we 
need to average 1 and 3 which is 2. We need to 
find out all subsets of size two and check which 
are satisfying the minimum support 
 
 There are only two sets which can satisfy the 
{T1,T8},{T8,T9} which can satisfy the 
minimum support. So {T1,T8},{T8,T9} are the 
frequnet sets. 
 
 
 
1                2                3            4            5          
6           7 
 

Figure 4.4 Eperimental Algorithm-1 
Step 1: We've 
compared 1,7 

Implemenation 
 

Step 2: We've checked 
at 3  
Step 3: At 2 we found 
our Frequent subsets.  
Advantages:  
 
 1.We can complete this algorithm by searching 
at all log n subsets. 
 
Disadvantages: 

1.If total size of the transaction is 
greater than 10 then it will be difficult to apply 
this algorithm as it is difficult to find out when 
n>10. It is NP-COMPLETE to find out. 
Solution To This problem: 
We know it optimal to find all possible subsets 
for n=10 then we divide each transcation such 
that we will get atmost ten elements elements in 
partition. 
 
4.4. Experimental Algorithm-2: 
To over come the problem in Algorithm 1 we 
will proceed with another procedure. Which 
uses partion. 

 
Input: Dataset, min_support  
Output: Frequent Set begin 

1. N=no. Of partitions 
2. C=no. Of colums in Dataset 
3. X=N/C 
4. R=No. Of transactions 
5. part=divide the dataset vertically into 

partitions of size R*X 

Size 2 

Items 
Sup
port 

T1,T4 2 
T1,T8 3 
T1,T9 2 
T4,T8 2 
T4,T9 2 
T8,T9 3 

  

size 1 
Item Support
T1 3 
T2 2 
T3 2 
T4 3 
T5 2 
T6 2 
T7 1 
T8 4 
T9 3 

Sub set 
size 

No of 
subsets

1 5 
2 10 
3 10 
4 5 
5 1 

Size n 
Items support 
T1,T2,T3,T4 1 
,T6,T8,T9  

Subsets Support
T1,T4,T8 2 
T1,T4,T9 2 
T4,T8,T9 2 
T1,T8,T9 1 
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6. D=no. Distinct elements in Data Set 
7. bol=boolean matrix representing 

DataSet 
1. count=the no. Transaction in which 

each element present 
2. place it in the respective index of matrix 

bol 
3. for each partition in part set 
4. n_d=no. Of distinct elements in 

partition 
5. for i in range 1 to X 
6. find subset of size-i 
7. find support of subsets 
8. if support>min_support 
16. store the subsets 
17. end 
18.    end 
19.       end   
20.  end 

In this algorithm the main step is to divide the 
transcation in such a way that every partion will 
get atmost ten distinct elements. 
Ex: Fig 4.5 

Tid Items 

T1 
1 3 9 13 23 25 34 36 38 40 52 54 59 
63 67 76 85 86 90 93 98 107 113 

T2 
2 3 9 14 23 26 34 36 39 40 52 55 59 
63 67 76 85 86 90 93 99 108 114 

T3 
2 4 9 15 23 27 34 36 39 41 52 55 59 
63 67 76 85 86 90 93 99 108 115 

T4 
1 3 10 15 23 25 34 36 38 41 52 54 
59 63 67 76 85 86 90 93 98 107 113

T5 
2 3 9 16 24 28 34 37 39 40 53 54 59 
63 67 76 85 86 90 94 99 109 114 

T6 
2 3 10 14 23 26 34 36 39 41 52 55 
59 63 67 76 85 86 90 93 98 108 114

T7 
2 4 9 15 23 26 34 36 39 42 52 55 59 
63 67 76 85 86 90 93 98 108 115 

 
Step 1: 

Max Tranasaction size =23 
Each partion size=23/10=2.3 (Upper 
bound is 3) 

 
pa
rt1 

par
t2 

pa
rt3 

part
4 

p
5 

part
6 

par
t7 p8 p9 

part
10 

p1
1 

p1
2 

T
1 

1 
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23 
25 

34 
36 
38 
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93 
98 

10
7 

11
3 

T
2 

2 
3 
9 14 

23 
26 

34 
36 
39 
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34 
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59 
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85 
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94 
99 

10
9 
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4 

T
6

2 
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10 
14

23 
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34 
36 
39 

4
1

52 
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63 
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39 

4
2
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5 

             
Step 2: 
In above partion we can generalize one thing 
that each partion is having at most of size is 
3. So we need to find only 10C3 . This will be 
an advantage and it will decrease time too. 
We need to solve this partions independently 
to form a frequent subset. 
 
1 size 
 
2-size 

     
     3-size 
 
 
 
Figure 4.6 Formation of subset with size >=3 
 
Disadvantage 
Due to this approach the is a problem after 
partioning the input we will have size1,size 
2,size3 subsets we need to form subsets with 
this partitions to find the frequent subsets. 
The formation of all subsets will lead to an 
exponetial algorithm again which is non-
optimal. 

Now we would like to present a 
completely a defferent algorithm which will 
not exponential time complexity. 
 
4.5 Experimental Algorithm- 3: 
Input: Dataset, min_support  
Output: Frequent Set 
begin 
Data=Transactions r=no.of rows in Data 
c=no.of columns in Data 
m=maximum no. in transactions 
count[1,m]=count of each item in Datafreq=no. 
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of items which are satisfying minimum support 
size=no.of items in freq set 
 
while(done==1) 
{ freq_check(frq); 

if (cheek==1) 
{ 
print(freq is frequent) done=0; 
} 
else 
{ 
calc_prob(freq); remove_item(freq); 

 
} 

}end 
 
frq_check(array a) #checks whether the all 
elements are satisfying the minimum_support 
are not 
calc_prob(freq) 
{prob[i]= count[i]/no.of transactions} 
 
remove_item(freq) 

{   remove();#removes the item with 
less probablity if(remove_items>2) 
{ 
form no of freq sets by removing the 

each element once 
} 
** each item size should get decreased 

by 1 
} 
 
Ex:: min_sup=3 Boolean Matrix: 
FC: Fig 4.7 
 
freq_count After sorting:

  Count  index  Sum 

1  4  1  22 

2  4  2  22 

3  2  3  17 

4  1  4  4 

5  2  5  9 

  
 
 
 
Count of everyFrequent count 
As the maximum count set is 4 and which is 
not satisfying the minimum support we reduce 
the size of the set by using probability. We will 
calculate the probability of every item then 
remove the item with less probability. This step 
is repeated whenever we need to reduce size of 
the set. 
 

 Maximum Count set:{T1,T4,T8,T9} 
 P(T1)=3/13=0.23 
 P(T4)=3/13=0.23 
P(T8)=4/13==0.31 
 P(T9)=3/13=0.23 
 
 

 
 
 
 
 
 
 

 
Fig:4.8 
 
Here T1,T4,T9 are having the less probability 
so we will form sub sets by removing each 
element. 
 
As size 3 is not satisfying the minimum 
support we need to go for size 2. Now we 
need to findout the sets with size 2 by using 
same formula. 
 
 P(T1)=3/13=0.23 
P(T4)=3/13=0.23 
P(T8)=4/13==0.31 
P(T9)=3/13=0.23 
 
 
                                  
 
Fig:4.9 
Now we've ended with 
{T1,T8},{T8,T9},{T4,T8} which are frequent 
sets. 
Disadvantage: 
 
This algorithm is not complete due to 
dependency on the probability. As we are 
leaving a item in decreasing the size of the 
frequent set. That item may be in a frequent 
set. 
5.Results 
 
The presented algorithms in the chapter 4 are 
Brute-force Algorithm, Apriori Algorithm, 
Experimental Algorithm 1, Experimental 
Algorithm 2, Experimental Algorithm 3. Brute-
force Algorithm does not work well as the 
number of distinct elements increases and it is 
having exponential time complexity. 

 

Item 
Sets  TID sets 

1 
T1,T4,T5,T8,
T9 

2 
T1,T2,T3,T4,
T6,T8,T9 

3 
T3, T5, T6, 
T7,T8, T9 

4  T2,T4 

5  T1,T8 

 

Cou
nt 
set 
num
ber  4  2  1 

count2  2  1 

 Count index sum
    
1 4 1 22
2 4 2 22
3 2 3 17 
4 2 5 9 
5 1 4 4 

Item 
coun
t 

T1 3 
T4 3 
T8 4 
T9 3 

 13 

 

T4,T8,T9 T1,T8,T9 T1,T4,T8   

T4,T8   2  T1,T8  3  T1,T8    3 

T9,T8   3  T8,T9  3  T4,T8    3 



 INTERNATIONAL   JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR) 
 

 
ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-2, ISSUE-8, 2015  

99 

Apriori Algorithm has many more advantages 
than any existing algorithms for finding a 
frequent set and association rules. But it 
requires as many scans as the number of 
subsets in each stage. Join step will take much 
time in worst-case and leads to an Exponential 
time complexity. 
 
Experimental Algorithm 1 which depicts the 
way of binary search. It works efficiently and 
optimally when number of distinct elements 
<10.Even it search half of the tree. It will not 
work good when the number of distinct 
elements increases. Finally it will become an 
exponetial algorithm and consume much time 
in generating the subsets. 
 
Experimental Algorithm 2 it is designed to over 
come the problems which are faced by the 
Experimental Algorithm 1. In This Algorithm 
we've divided each transaction and computed 
independently. Even then it lead us to an 
exponential algorithm in joining and forming 
the subsets greater than 3. It is just because we 
need to take all combinations. 
 
 
Experimental Algorithm 3 it is completely 
different approach than the existing algorithms 
it works better than the rest of two 
experimental algorithms. It is not complete 
because it finds the frequent sets through 
probability.  
 
Fig:4.10 

Transaction 1 
 Item set count 

 
T4,T8,
T9 2 

 
T1,T8,
T9 1 

 
T1,T4,
T8 2 

 
 
6.Conclusions and Scope for Future Work 
 
In this papers we've tried to design new 
algorithm to find out the frequent set. 
Comparing with the other algorithms the 
experimental algrorithm-3 will work efficiently 
than the rest of the two algorithms but it is not 
complete because it works on probability. In 
future we will try to improve the existing 

algorithm i.e experimental algorithm-3 to make 
it work completely on any given data. 
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If we do the same for 2nd transaction too
 Item set count
 T4,T8,T9 2 
 T1,T8,T9 1 
 T1,T4,T8 2 

   


