

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-2, ISSUE-8, 2015

91

HOW EFFICIENT IS APRIORI: A COMPARATIVE ANALYSIS

1Jabeen Sultana, 2G. Nagalaxmi
1Lecturer at IIIT Basar

Email:1Jabeens02@gmail.com,2nlaxmi.mtech@gmail.com

Abstract
The goal of data mining is to discover
knowledge and reveal new, interesting and
previously unknown information to the user.
Association rule mining forms an important
research area in the field of data mining.
Association rules discovers patterns and
correlations that may be buried deep inside a
database. They have therefore become a key
data-mining tool and it has been well
researched. Many algorithms have been
proposed to find association rules in
databases with binary and categorical
attributes. However many real world
databases are in quantitative nature and the
current solutions for this kind of databases
are so far inadequate. A satisfactory solution
would be of great benefit to many fields.

This paper is aimed at proposing new
algorithms for mining association rules on
the quantitative data. We are proposing a
new method for deriving the association
rules on the quantitative data by using
apriori algorithm, Clustering and fuzzy set
concepts. The association rules of
quantitative data are represented in two
independent ways, one is with statistical
terms namely Mean and Standard
Deviation, and another way is with fuzzy
linguistic terms. The Statistical Association
rule consists of quantitative attributes along
with the corresponding Mean and Standard
Deviation. The representation of the rules
was done by means of statistical terms as
they can describe the behaviour of
quantitative attributes better than the
existing methods and the theory of fuzzy sets
can be used over relational databases to

discover useful, meaningful patterns. We
proposed a new approach to infer fuzzy
association rules from the quantitative data,
which is fully different from the earlier
approaches. A case study was done on the
Commodity Export data. The data is
collected by DGCIS (Directorate General of
Commercial Intelligence and Statistics) and
available at Reserve Bank of India (RBI)
data warehouse, known as Central Database
Management System (CDBMS). For our
work, we have received the data from
CDBMS.

1.1 Introduction

There are many challenging problems in
data mining. One of them includes finding
association rule mining. Association rule
mining includes another problem which is
frequent set generation even after existence of
different types of algorithms to find out the
association rules in given databases. There is a
great need of designing efficient and effective
algorithms in data mining. What does it mean
by Association Rule Mining? Before answering
this question. We need to answer another
question. What does it exactly mean by
frequent set? A frequent set is set which occurs
certain number of times in the dataset. After
finding all frequent sets we will generate some
interesting rule in the form of IF-THEN rules,
these rules are noting but association rules.
Through which we will generate information
from the database or warehouse which we
stored over years.

Decision makers use this information to make
effective decisions. To make profits by
analyzing the existing user data. Our analysis

 INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-2, ISSUE-8, 2015

92

leads to interesting patterns through which
decision makers will provide frequently used
items to the users through which marketers will
end up with the profits. But the main problem
comes here is designing effective algorithms
which can take large data set as input and
provide output within time. So it is the
responsibility of the designer to make sure that
the algorithms should meet the needs of the
decision maker. The main part of the algorithm
is to deal with the subsets generated by the
algorithm. As the subset generation problems is
NP-COMPLETE so it not feasible to design an
algorithm which will end up with exponential
time complexity. Our algorithm should be
optimal in terms of Time complexity and Space
complexity and work better over existing
algorithms. Even the existing algorithms such
as apriori and it's variations will lead to an
exponential algorithm. Due to the exponential
time complexity of these algorithms we have to
go for another algorithm for a better solution.
The main objective of this project is to
overcome the worst-case exponential time
complexity of existing algorithms through
designing a new algorithm.

2.1 Background
The concept of Association rule mining is
introduced by Apriori Algorithm (Agarwal &
Srikanth, 1994). It works following a breadth
first search strategy first, for each feature, all
frequent similar values (frequent similar
subdescriptions with only one feature), are
determined first. Combining frequent similar
patterns of length 1, candidates to frequent
similar patterns of length 2 are obtained.
Afterwards, for each pair (Pi,- Pj) of frequent
similar subdescriptions with k-1 features, found
in the iteration k -1, if Pi and Pj have a common
subdescription with k-2 features, they are
combined in order to create a new candidate
subdescription P* with k features .

In Agrawal and Srikant (1994) a fast
algorithm for generating interesting association
rules from frequent patterns is described. This
algorithm is based on the following property.
For each frequent pattern, if the confidence of
the rule X → Y obtained by separating its
features in two disjoint subsets is less than a
specified minimum confidence threshold, then
the confidence of all rule X-Z → YZ, where Z
is a sub pattern of X, is also less than the
specified minimum threshold. As a

consequence of this property, if a rule X → Y is
not interesting then all rules X- Z → YZ, where
Z is a sub pattern of X, are also not interesting,
and it is not necessary verifying their
confidence. In the fast algorithm, for each
frequent pattern, first all rules with only one
feature in the consequent and the remaining
features in the antecedent are generated. Later,
for each rule, the features of the antecedent are
recursively moved to the consequent and thus
new rules are generated, until the confidence of
the rule become less than the minimum
confidence threshold.

Other algorithms for generating
interesting association rules from frequent
patterns have been reported in the literature,
however they are designed for specific kinds of
associations rules or domains (Ayubi, Muyeba,
Baraani, & Keane, 2009; Chen & Wei, 2000;
Choi & Hyun, 2010; Li-Min, Shu-Jing, & Don-
Lin, 2010;Ya-Han & Yen-Liang, 2006).

2.2 Definitions
Association Rule Mining: Finding interesting
relationships in among items
Measures of rule interestingness: association
rules are considered interesting if they satisfy
both a minimum support threshold and a
minimum confidence threshold.
Let I = {I1 , I2 , . . . , Im } be a set of items.
Let D, the task-relevant data, be a set of
database transactions where each transaction
T is a set of items such that T ⊆ I . An
association rule is an implication of the form
A ⇒ B, where A ⊂ I , B ⊂ I , and A ∩ B = φ.

Support: Percentage of transaction D that
contain
 A ∪ B support(A⇒ B) = P(A ∪ B)
Confidence:the percentage of transactions in D
containing A that also contain B

support A ∪ B
 support A

Additional interestingness measures can be
applied for the discovery of correlation
relationships between associated items.
Association rule mining can be viewed as a
two-step process:

1. Find all frequent itemsets: By
definition, each of these itemsets will
occur at least as frequently as a
predetermined minimum support count,
min sup.

 INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-2, ISSUE-8, 2015

93

2. Generate strong association rules from
the frequent itemsets: By definition,
these rules must satisfy minimum
support and minimum confidence.

Classification Of Association Rule Mining:

There are many kinds of frequent
patterns, association rules, and correlation
relationships. Frequent pattern mining can be
classified in various ways, based on the
following criteria:

1. Based on the types of values handled in
the rule
➢ Boolean association rule
➢ Quantitative association rule

2. Based on the kinds of rules to be mined
➢ Association rules
➢ Correlation rules
➢ Strong gradient relationships 1

3. Based on the number of data
dimensions involved in the rule
➢ Multidimensional association rule

4. Based on the levels of abstraction
involved in the rule set

➢ Multilevel association rules
➢ Single-level association rules

5. Based on the kinds of patterns to be
mined
➢ Frequent itemset mining
➢ Sequential pattern mining
➢ Structured pattern mining

3. Frequent Subset Generation Problem

The frequent subset generation problem
includes given a list of transactions with n
distinct items we need to find a frequent set
among them. To solve this problem we need to
scan through the data set and count how many
number of times it is present in dataset and then
we need to check that the subsets are satisfying
the minimum support constraint are not. If they
satisfy the constraint then we can find the
frequent set. The main problem comes with the
space complexity in this problem is even if we
provide the input as all possible combination
for a given set of items. We require exponential
space. If space complexity is not a problem.
Algorithm steps will increase exponentially so
finally we end up with a exponential problem.
We have different sort of approaches to solve
this problem in the next chapter we are going to
discuss a brute-force algorithm, apriori
Algorithm and several experimental algorithm
we've tried to solve the problem. Each

Algorithm has been explained with an example.
Moreover in designing a solution to this
problem we will make sure that the each and
every approach we are going to check is
mathematically complete and optimal. In the
process of designing the algorithm we have
encountered many problems. Even then we
have improved the performance of the
algorithm and designed a remedy for each
problem

4. Implementation of Algorithms

There are different types of algorithm
to solve the problem of frequent set generation.
Apriori and it's variations work effectively in
almost all cases. In this chapter before going to
the Apriori algorithm we will discuss Brute-
force approach to solve the problem. Then
after we will go for the apriori algorithm. At
the end we will discuss our experimental
algorithms.
4.1 The Brute-force Approach:

In this approach all possible subsets of
set of distinct items in a transaction set. And
check if any one them is frequent by comparing
with each and every transaction. As it is known
already that the brute-force approaches lead to
exponential time it is not preferable.
Pseudo-code for Brute-force approache:
input:Transaction T, minimum support
min_sup
output:Frequent set FS
begin
1. Generate all possible subsets S of

Transaction T.
2. while each subset s ϵ S
3. sup=support(s)
4. ifsup>=min_sup
5. add s to FS
6. elsediscard the subset
7. end while
8. Find Maximal Frequent Item Sets2 from

FS
9. Generate Rules for Maximal Frequent

Item Set
end

Drawbacks:

In this method if d distinct items are
present in transaction then 2d -1 Subsets need
to be generated for which computation time
increases exponentially with increase in d. This
is the main pitfall of this method.

 INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-2, ISSUE-8, 2015

94

4.2 The Apriori Algorithm:
The name of the algorithm is based on

the fact that the algorithm uses prior knowledge
of frequent itemset properties. Apriori employs
an iterative approach known as a level-wise
search, where k-itemsets are used to explore (k
+ 1)-itemsets. First, the set of frequent 1-
itemsets is found by scanning the database to
accumulate the count for each item, and
collecting those items that satisfy minimum
support. The resulting set is denoted Lv1 .
Next, L1 is used to find L2 , the set of frequent
2-itemsets, which is used to find L3 , and so on,
until no more frequent k-itemsets can be found.
The finding of each Lk requires one full scan of
the database.

To improve the efficiency of the level-
wise generation of frequent itemsets, an
impor-tant property called the Apriori
property is used to reduce the search space.
We will first describe this property, and then
show an example illustrating its use.

Apriori property: All nonempty subsets of a

frequent itemset must also be frequent.
This property is used in the algorithm by
using two step process:

1. The join step:To find Lk , a set of
candidate k-itemsets is generated by
joining Lk −1 with itself. This set of
candidates is denoted Ck .

2. The prune step: Ck is a superset
of Lk , that is, its members may or may
not be frequent, but all of the frequent
k-itemsets are included inCk all
candidates having a count no less than
the minimum support count are frequent
by definition, and therefore belong to
Lk .

Pseudo-Code of Apriori Algorithm:

To improve the efficiency of apriori
algorithm there are certain variations

1.Hash-based technique:A hash-based
technique can be used to reduce the size of the
candidate k-itemsets, Ck , for k > 1. For
example, when scanning each transaction in the
database to generate the frequent 1-itemsets, L1
, from the candidate 1-itemsets in C1 , we can
generate all of the 2-itemsets for each
transaction, hash (i.e., map) them into the
different buckets of a hash table structure, and

increase the corresponding bucket counts . A 2-
itemset whose corresponding bucket count in
the hash table is below the support

2.Transaction reduction :A transaction that
does not contain any frequent k-itemsets cannot
contain any frequent (k + 1)-itemsets.
Therefore, such a transaction can be marked or
removed from further consideration because
subsequent scans of the database for j-itemsets,
where j > k, will not require it.

3.Partitioning :A local frequent itemset may
or may not be frequent with respect to the
entire database, D. Any itemset that is
potentially frequent with respect to D must
occur as a frequent itemset in at least one of the
partitions. Therefore, all local frequent itemsets
are candidate itemsets with respect to D. The
collection of frequent itemsets from all
partitions forms the global candidate itemsets
with respect to D. In Phase II, a second scan of
D is conducted in which the actual support of
each candidate is assessed in order to determine
the global frequent itemsets. Partition size and
the number of partitions are set so that each
partition can fit into main memory and
therefore be read only once in each phase.

4.Sampling: The basic idea of the sampling
approach is to pick a random sample S of the
given data D, and then search for frequent
itemsets in S instead of D. In this way, we
trade off some degree of accuracy against
efficiency. The sample size of S is such that the
search for frequent itemsets in S can be done in
main memory, and so only one scan of the
transactions in S is required overall. Because
we are searching for frequent itemsets in S
rather than in D,

1 F1 = {frequent 1-itemsets}
2 For (k = 2; Fk-1 ≠ 0; k++) loop
3 Ck = generate (Fk-1);
4 For all transactions x ∈ D loop

5
Cx = generate_subset (Ck, x);
//candidate generation;

6 For all candidates c ∈ Cx loop
7 c.count++
8 end loop;
9 end loop;

10 Fk = { c ∈ Ck | c.count ≥ minsup}
11 end loop;
12 Return ∪k {Fk}

 INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-2, ISSUE-8, 2015

95

it is possible that we will miss some of the
global frequent itemsets.
5.Dynamic itemset counting :A dynamic
itemset counting technique was proposed in
which the database is partitioned into blocks
marked by start points. In this variation, new
candidate itemsets can be added at any start
point, unlike in Apriori, which determines new
candidate itemsets only immediately before
each complete database scan. The technique is
dynamic in that it estimates the support of all
of the itemsets that have been counted so far,
adding new candidate itemsets if all of their
subsets are estimated to be frequent. The
resulting algorithm requires fewer database
scans than Apriori.
Example 1.1:
Item Sets TID sets

1 T1,T4,T5,T8,T9
2 T1,T2,T3,T4,T6,T8,T9
3 T3, T5, T6, T7,T8, T9
4 T2,T4
5 T1,T8

Implementation of apriori algorithm:
minimum support threshold=3

C1 l1 C2

L2 C3

 Figure 4.1 Apriori Example

There are no C3 items satisfying minimum
support threshold we stop with sets {T1,T8} ,
{T8,T9}.
Disadvantages:

This algorithm will lead to a
exponetial time complexity in worst-case
and it will generate 2^d-1 subsets which is
not optimal.
Solution to This Problem:

Rather than generating the frequent sets
sequentially start searching the frequent set by
using bisection method which will be
completed in log n steps.
Bisection Method:

This method logic is similar to Binary
search method. In a sorted sequence if we
would like to find out the a number we directly
go to middle of array and we compare with the
middle element and if it is greater than
searching element we proceed further if not we
proceed lower half. This will Take log n steps.
Based on method we would like to present

4.3 Experimental Algorithm 1:

The main motivation of this algorithm
is to overcome the problem of exponential time
complexity through reducing the number of
steps. As power set size is n the there will be
2^n sub sets we can align the increasing order
with respective their size.
Ex: consider a 5 element set and Tree
generated through brute-force algorithm to find
all sub sets of the set. The tree generated has
32 nodes.

Figure 4.2 Power Set

In this algorithm we use bisection method to
find the frequent set in generated tree. The
advantage of this algorithm of it will find the
frequent set in log n number of steps through
either selecting only upper portion of the tree or
lower portion of the tree. The bisection method
is mathematical method to find roots this
method is also used in binary search method
that why the binary search time complexity is
logn.
Input: Dataset, min_support
Output: Frequent Set begin:

1. N= no. of distinct items
2. find substest of size-1
3. support-1= find support of size-1 subsets
4. if max(support-1)>=min_support
5. S=subset of size-N
6. if (support(S)>=min_support)
7. Frequent Set = S
8. else

 INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-2, ISSUE-8, 2015

96

9. low=1
10. high=N
11. mid=┌(low+high)/2┐

12 for i in range 1 to logN
13. S=subsets of size-mid
14. support= support(S)

15. if max(support)<min_support
16. high=mid
17. mid=┌(low+high)/2┐

18. else
19. low=mid;
20. mid=┌(low+high)/2┐

21.
 Index=index of subset with
max(support) in S

22. Frequent Set=S(index)

23. end
24. end
25. end
26. end
27. end

Fig. 4.3:subsets in tree

In the above example consist of five distinct
elements and there will five different size sub
sets in tree. We need to count the number of
different subsets present in tree.

Step 1: compute support of size 1 and size n
Size 1 is satisfying the minimum support but
not size n=7 is not satisfying the minimum
support.

Step2: as n=7 is not satisfying the support we
will jump to n=7/2=3.5 we need to take lower
bound on this. Then we will get 3. The
data Items that satisfying the minimum support
are T1,T4,T8,T9 we need form all the subsets
of size three with these Items They are

Step 3: We didn't find a set which can satisfy
our minimum support with size three.then we
need to average 1 and 3 which is 2. We need to
find out all subsets of size two and check which
are satisfying the minimum support

 There are only two sets which can satisfy the
{T1,T8},{T8,T9} which can satisfy the
minimum support. So {T1,T8},{T8,T9} are the
frequnet sets.

1 2 3 4 5
6 7

Figure 4.4 Eperimental Algorithm-1
Step 1: We've
compared 1,7

Implemenation

Step 2: We've checked
at 3
Step 3: At 2 we found
our Frequent subsets.
Advantages:

 1.We can complete this algorithm by searching
at all log n subsets.

Disadvantages:

1.If total size of the transaction is
greater than 10 then it will be difficult to apply
this algorithm as it is difficult to find out when
n>10. It is NP-COMPLETE to find out.
Solution To This problem:
We know it optimal to find all possible subsets
for n=10 then we divide each transcation such
that we will get atmost ten elements elements in
partition.

4.4. Experimental Algorithm-2:
To over come the problem in Algorithm 1 we
will proceed with another procedure. Which
uses partion.

Input: Dataset, min_support
Output: Frequent Set begin

1. N=no. Of partitions
2. C=no. Of colums in Dataset
3. X=N/C
4. R=No. Of transactions
5. part=divide the dataset vertically into

partitions of size R*X

Size 2

Items
Sup
port

T1,T4 2
T1,T8 3
T1,T9 2
T4,T8 2
T4,T9 2
T8,T9 3

size 1
Item Support
T1 3
T2 2
T3 2
T4 3
T5 2
T6 2
T7 1
T8 4
T9 3

Sub set
size

No of
subsets

1 5
2 10
3 10
4 5
5 1

Size n
Items support
T1,T2,T3,T4 1
,T6,T8,T9

Subsets Support
T1,T4,T8 2
T1,T4,T9 2
T4,T8,T9 2
T1,T8,T9 1

 INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-2, ISSUE-8, 2015

97

6. D=no. Distinct elements in Data Set
7. bol=boolean matrix representing

DataSet
1. count=the no. Transaction in which

each element present
2. place it in the respective index of matrix

bol
3. for each partition in part set
4. n_d=no. Of distinct elements in

partition
5. for i in range 1 to X
6. find subset of size-i
7. find support of subsets
8. if support>min_support
16. store the subsets
17. end
18. end
19. end
20. end

In this algorithm the main step is to divide the
transcation in such a way that every partion will
get atmost ten distinct elements.
Ex: Fig 4.5

Tid Items

T1
1 3 9 13 23 25 34 36 38 40 52 54 59
63 67 76 85 86 90 93 98 107 113

T2
2 3 9 14 23 26 34 36 39 40 52 55 59
63 67 76 85 86 90 93 99 108 114

T3
2 4 9 15 23 27 34 36 39 41 52 55 59
63 67 76 85 86 90 93 99 108 115

T4
1 3 10 15 23 25 34 36 38 41 52 54
59 63 67 76 85 86 90 93 98 107 113

T5
2 3 9 16 24 28 34 37 39 40 53 54 59
63 67 76 85 86 90 94 99 109 114

T6
2 3 10 14 23 26 34 36 39 41 52 55
59 63 67 76 85 86 90 93 98 108 114

T7
2 4 9 15 23 26 34 36 39 42 52 55 59
63 67 76 85 86 90 93 98 108 115

Step 1:

Max Tranasaction size =23
Each partion size=23/10=2.3 (Upper
bound is 3)

pa
rt1

par
t2

pa
rt3

part
4

p
5

part
6

par
t7 p8 p9

part
10

p1
1

p1
2

T
1

1
3
9 13

23
25

34
36
38

4
0

52
54
59 76

85
86

90
93
98

10
7

11
3

T
2

2
3
9 14

23
26

34
36
39

4
0

52
55
59

63
67 76

85
86

90
93
99

10
8

11
4

T
3

2
4 15

23
27

34
36

4
1

52
55

63
67 76

85
86

90
93

10
8

11
5

9 39 59 99

T
4

1
3

10
15

23
25

34
36
38

4
1

52
54
59

63
67 76

85
86

90
93
98

10
7

11
3

T
5

2
3
9 16

24
28

34
37
39

4
0

53
54
59

63
67 76

85
86

90
94
99

10
9

11
4

T
6

2
3

10
14

23
26

34
36
39

4
1

52
55
59

63
67 76

85
86

90
93
98

10
8

11
4

T
7

2
4
9 15

23
26

34
36
39

4
2

52
55
59

63
67 76

85
86

90
93
98

10
8

11
5

Step 2:
In above partion we can generalize one thing
that each partion is having at most of size is
3. So we need to find only 10C3 . This will be
an advantage and it will decrease time too.
We need to solve this partions independently
to form a frequent subset.

1 size

2-size

 3-size

Figure 4.6 Formation of subset with size >=3

Disadvantage
Due to this approach the is a problem after
partioning the input we will have size1,size
2,size3 subsets we need to form subsets with
this partitions to find the frequent subsets.
The formation of all subsets will lead to an
exponetial algorithm again which is non-
optimal.

Now we would like to present a
completely a defferent algorithm which will
not exponential time complexity.

4.5 Experimental Algorithm- 3:
Input: Dataset, min_support
Output: Frequent Set
begin
Data=Transactions r=no.of rows in Data
c=no.of columns in Data
m=maximum no. in transactions
count[1,m]=count of each item in Datafreq=no.

 INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-2, ISSUE-8, 2015

98

of items which are satisfying minimum support
size=no.of items in freq set

while(done==1)
{ freq_check(frq);

if (cheek==1)
{
print(freq is frequent) done=0;
}
else
{
calc_prob(freq); remove_item(freq);

}

}end

frq_check(array a) #checks whether the all
elements are satisfying the minimum_support
are not
calc_prob(freq)
{prob[i]= count[i]/no.of transactions}

remove_item(freq)

{ remove();#removes the item with
less probablity if(remove_items>2)
{
form no of freq sets by removing the

each element once
}
** each item size should get decreased

by 1
}

Ex:: min_sup=3 Boolean Matrix:
FC: Fig 4.7

freq_count After sorting:

 Count index Sum

1 4 1 22

2 4 2 22

3 2 3 17

4 1 4 4

5 2 5 9

Count of everyFrequent count
As the maximum count set is 4 and which is
not satisfying the minimum support we reduce
the size of the set by using probability. We will
calculate the probability of every item then
remove the item with less probability. This step
is repeated whenever we need to reduce size of
the set.

 Maximum Count set:{T1,T4,T8,T9}
 P(T1)=3/13=0.23
 P(T4)=3/13=0.23
P(T8)=4/13==0.31
 P(T9)=3/13=0.23

Fig:4.8

Here T1,T4,T9 are having the less probability
so we will form sub sets by removing each
element.

As size 3 is not satisfying the minimum
support we need to go for size 2. Now we
need to findout the sets with size 2 by using
same formula.

 P(T1)=3/13=0.23
P(T4)=3/13=0.23
P(T8)=4/13==0.31
P(T9)=3/13=0.23

Fig:4.9
Now we've ended with
{T1,T8},{T8,T9},{T4,T8} which are frequent
sets.
Disadvantage:

This algorithm is not complete due to
dependency on the probability. As we are
leaving a item in decreasing the size of the
frequent set. That item may be in a frequent
set.
5.Results

The presented algorithms in the chapter 4 are
Brute-force Algorithm, Apriori Algorithm,
Experimental Algorithm 1, Experimental
Algorithm 2, Experimental Algorithm 3. Brute-
force Algorithm does not work well as the
number of distinct elements increases and it is
having exponential time complexity.

Item
Sets TID sets

1
T1,T4,T5,T8,
T9

2
T1,T2,T3,T4,
T6,T8,T9

3
T3, T5, T6,
T7,T8, T9

4 T2,T4

5 T1,T8

Cou
nt
set
num
ber 4 2 1

count2 2 1

 Count index sum

1 4 1 22
2 4 2 22
3 2 3 17
4 2 5 9
5 1 4 4

Item
coun
t

T1 3
T4 3
T8 4
T9 3

 13

T4,T8,T9 T1,T8,T9 T1,T4,T8

T4,T8 2 T1,T8 3 T1,T8 3

T9,T8 3 T8,T9 3 T4,T8 3

 INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-2, ISSUE-8, 2015

99

Apriori Algorithm has many more advantages
than any existing algorithms for finding a
frequent set and association rules. But it
requires as many scans as the number of
subsets in each stage. Join step will take much
time in worst-case and leads to an Exponential
time complexity.

Experimental Algorithm 1 which depicts the
way of binary search. It works efficiently and
optimally when number of distinct elements
<10.Even it search half of the tree. It will not
work good when the number of distinct
elements increases. Finally it will become an
exponetial algorithm and consume much time
in generating the subsets.

Experimental Algorithm 2 it is designed to over
come the problems which are faced by the
Experimental Algorithm 1. In This Algorithm
we've divided each transaction and computed
independently. Even then it lead us to an
exponential algorithm in joining and forming
the subsets greater than 3. It is just because we
need to take all combinations.

Experimental Algorithm 3 it is completely
different approach than the existing algorithms
it works better than the rest of two
experimental algorithms. It is not complete
because it finds the frequent sets through
probability.

Fig:4.10

Transaction 1
 Item set count

T4,T8,
T9 2

T1,T8,
T9 1

T1,T4,
T8 2

6.Conclusions and Scope for Future Work

In this papers we've tried to design new
algorithm to find out the frequent set.
Comparing with the other algorithms the
experimental algrorithm-3 will work efficiently
than the rest of the two algorithms but it is not
complete because it works on probability. In
future we will try to improve the existing

algorithm i.e experimental algorithm-3 to make
it work completely on any given data.

References

[1] R. Agrawal and R. Srikant. Fast Algorithms
for Mining Association Rules. In 20th
International Conference on Very Large
Databases (VLDB). 1994.

[2]The Complexity of Mining Maximal
Frequent Itemsets and Maximal Frequent
Patterns Guizhen Yang Department of
Computer Science and Engineering University
at Buffalo, The State University of New York
Buffalo, NY 14260-2000
gzyang@cse.buffalo.edu

[3]Proposing an Efficient Method for Frequent
Pattern Mining Vaibhav Kant Singh, Vijay
Shah, Yogendra Kumar Jain, Anupam Shukla,
A.S. Thoke, Vinay Kumar Singh, Chhaya Dule,
Vivek Parganiha

[4]An Information-Theoretic Approach to
Quantitative Association Rule Mining Yiping
Ke James Cheng Wilfred Ng Department of
Computer Science Hong Kong University of
Science and Technology Clear Water Bay,
Kowloon, Hong Kong, China {keyiping,
csjames, wilfred}@cs.ust.hk

[5]Mining frequent patterns and association
rules using similarities Ansel Y. Rodríguez-
González a,⇑, José Fco. Martínez-Trinidad a,
Jesús A. Carrasco-Ochoa a, José Ruiz-
Shulcloper b

[6]An Efficient Approach of Association Rule
Mining on Distributed Database Algorithm
Neha Saxena1, Rakhi Arora2, Ranjana
Sikarwar3 and Ashika Gupta4

[7]A Review Approach on various form of
Apriori with Association Rule Mining Ms.
Pooja Agrawal1, Mr. Suresh kashyap2,
Mr.Vikas Chandra Pandey3, Mr. Suraj Prasad
Keshri4 [8]Improving Efficiency of Apriori
Algorithm Using Transaction Reduction
Jaishree Singh*, Hari Ram**, Dr. J.S.
Sodhi***

If we do the same for 2nd transaction too
 Item set count
 T4,T8,T9 2
 T1,T8,T9 1
 T1,T4,T8 2

