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Abstract 
Undoubtedly, the MapReduce is the most 
powerful programming paradigm in 
distributed computing. The enhancement of 
the MapReduce is essential and it can lead the 
computing faster. Therefore, there are many 
scheduling algorithms to discuss based on 
their characteristics. Moreover, there are 
many shortcoming to discover in this field. In 
this article, we present the state-of-the-art 
scheduling algorithm to enhance the 
understanding of the algorithms. The 
algorithms are presented systematically such 
that there can be many future possibilities in 
scheduling algorithm through this article.   
In this paper, we provide in-depth insight on 
the MapReduce scheduling algorithm. In 
addition, we discuss various issues of 
MapReduce scheduler developed for large-
scale computing as well as heterogenous 
environment.  
 Index Terms: Scheduler, MapReduce, 
MapReduce Scheduler, Large-scale 
computing, Data-intensive computing.   

I. INTRODUCTION  

Unquestionably, the MapReduce is the most 
powerful and popular programming paradigm of 
parallel and distributed processing engine. The 
MapReduce meets very vast range of application 
for large-scale processing. The MapReduce is 
proven to be the best programming platform for 
dataintensive computing. The Google File 
System (GFS) was introduced in 2003 [31] and 
the MapReduce was introduced by IT giant 
Google Inc. in 2004 [32]. It was absolutely  

 
proprietary [31] [32] and written in C++. The 
Yahoo! company wanted the replica of the 
MapReduce and Hadoop [2], has got huge 
popularity. The MapReduce is very easy 
programming framework to develop the 
largescale distributed application within a few 
lines of code. The MapReduce shows the 
properties of simple yet powerful. However, the 
gigantic scale of data processing is not a piece of 
cake and it has become easier on the MapReduce 
programming environment. However, the 
MapReduce has certain limitation which is 
highlighted later section.   
  

The MapReduce is developed under the Apache 
Hadoop framework [2] and it is proven to be the 
best framework for application development in 
large-scale distributed computing environment. 
However, the large scale computing is split into 
several small pieces of computing and distributed 
the task in several computing nodes. The tasks 
are scheduled in different suitable node.  
Nevertheless, the detecting or finding the suitable 
node for running a task is a very difficult job. 
Further, the suitable node must enhance the job 
performance and hence, this is the most relevant 
algorithm to fine tune. There is always a scope to 
enhance job performance by placing the tasks in 
suitable node. The most common scheduler is 
first-come first-serve (FCFS). However, the 
Hadoop MapReduce has priority, capacity and 
fair scheduler. Interestingly, these three 
schedulers are not enough to enhance the 
performance of jobs. There are many parameters 
to be considered, for instance, data locality.  



INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR) 

 

 
 ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-3, ISSUE-11, 2016 

89 

  

  
Fig 1: Taxonomy of MapReduce scheduler  

II. SPECULATIVE SCHEDULING 
ALGORITHMS  

The most of task submits on time excepts one or 
two. Albeit, the fast processing of all other tasks, 
one task can lengthen the job completion time 
and it is known as Achilles' Heel of MapReduce. 
There are many reasons for a task to be a 
straggler, namely, faulty hardware, wrong 
configuration, network congestion, link failure, 
low processing power, and  heavy background 
noise.  The straggler task should be identified as 
early as possible so that speculative execution of 
the task can be started. A performance can also 
be degraded when aggressive speculation of a 
task in testing whether the task belongs to 
straggler or not.  

A. Approxiation-based Scheduler  

The Longest Approximate Time to End 
(LATE) is the milestone for MapReduce 
scheduling algorithm which was introduced in 
2008[1]. The focal point of this algorithm is 
speculative execution of the straggler task to 
increase MapReduce performance. LATE[1] 
algorithm performs speculative execution of a 
task in the heterogeneous environment. The key 
point of LATE is prioritizing the task to speculate 
on the different node. Interestingly, LATE selects 
fastest node to launch the task speculatively and 
caps the speculated task to prevent thrashing. 
Whenever a node is requesting for a task and has 
its slot free, Hadoop schedules the failed task 
with high priority. If no such task present, then 
LATE pick a non-running task from a job to 
schedule in Hadoop. Hadoop uses a progress 
score for each task which is 0 to 1 to select the 
task to be run speculatively. In map phase, the 

_  is the fraction of input data read 

to the total data whereas the _  for 
reduce phase is split into three phases, namely, 
Copy phase, Sort phase and Reduce phase. The 
key idea of LATE scheduler is that it always 
speculatively execute the task which will finish 
late in near future. So, it improves the 
performance and shorten the response times. 
LATE uses progress of the map and reduce task 
to approximate the completion time of the task in 
the future.  
LATE estimates the progress rate of each task as  

, where  is the task  

running time. And completion time for every task 
can be calculated using the formula of 

 = 
.   

However, Hadoop launches task based on data 
locality whereas LATE doesn't consider locality 
while launching the speculative map task. 
Assumption used by LATE is that most of the 
map task is data local, therefore, network 
utilization is less.  When it launches non local 
task, data can be sent to the node using the 
network.  Moreover, It launches the backup task 
for inappropriate tasks. LATE considers the slow 
nodes using the progress rate, but it doesn't 
consider whether a map task or a reduce task is  
slow. In heterogeneous environment the value of 
a node changes with the execution of map and 
reduce task, with changes in input the 

_  for the map and reduce task 
differs in different nodes.     
  In a heterogeneous environment, LATE suffers 
because of the static nature. However, a Self-
Adaptive MapReduce scheduling (SAMR) 
algorithm[5], which computes _  
of tasks dynamically and reconciles to the 
constantly diverse environment. It works well 
compared to LATE in a same manner, like it uses 
historical information stored in the node for 
determining the slow task which needs to be 
executed speculatively. Dynamic nature of 
SAMR significantly improves the MapReduce 
execution time and system resources as shown in 
paper[5]. SAMR saves system resources by 
classifying slow task further in slow map task and 
slow reduce task. SAMR works on the key 
insight that slow task prolongs the execution time 
of the whole job and takes more time to finish a 
job because of the differences in  computational 



INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR) 

 

 
 ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-3, ISSUE-11, 2016 

90 

power. SAMR[5] calculates more accurate 
progress score compare to LATE because it 
considers historical information stores in the 
node. The historical information is saved on each 
node in xml format to update the historical 
information of a node. To start with, historical 
information of the node is get by the 
TaskTracker. Then, based on the historical 
information the parameter for the task gets tuned. 
SAMR finds the task from the queue of slow task 
and schedule it over the fast TaskTrackers which 
are freely available to achieve high performance 
and response time.   

However, SAMR has some drawbacks. It 
suffers with different map and reduce stage 
weights of different types of jobs. As well as for 
the same type of jobs when the input data set 
changes the stage weight changes. SAMR doesn't 
consider the change in weight of the stage 
dynamically. In 2012, an Enhanced Self-
Adaptive Map Reduce [ESAMR] [25] scheduling 
algorithm is proposed to enhance the speculative 
re-execution of straggler tasks in MapReduce. 
Using a k-means clustering algorithm, it offers 
historical stage weight information on each node 
to identify slow task node with high veracity, and 
divide them into k clusters. It arranges the task 
into several clusters and job execution time on the 
node is calculated based on the cluster’s weights.   

III. LOCALITY-AWARE REDUCE TASK 
SCHEDULER  (LARTS)  

LARTS[9] is the only scheduling algorithm for 
Reduce task based on data locality. Native 
Hadoop scheduler works on the phenomenon of 
early shuffle of reducers near the partitions, it 
helps in improving the performance, but it 
simultaneously increases the network traffic. 
Regardless, LARTS maintains the aid of 
interleaving process with less network traffic. 
Early shuffle mechanism in Hadoop improves 
performance by scheduling a reduce task before 
intermediate data present in each partition is 
available. Generally, after the commitment of 
certain percentage(5%) of mappers, scheduling 
process of reduce task starts. The reason for early 
shuffle is to provide mappers intermediate output 
partition to a corresponding reducer early so that 
it doesn't have to wait for getting processed by 
reducers, and it helps to improve turnaround time 
for MapReduce job. LARTS algorithm modifies 
Hodoop to distinguish the network traffic into 

node local, rack local and off rack. When a 
reducer is scheduled to the node having an 
intermediate data partition to be consumed by the 
same reducer is known as node local traffic, i.e., 
node local traffic is negligible because reducer is 
scheduled to the same node containing the map 
partition. Rack local traffic is obtained when the 
partition generated by map task of the node is 
shuffled to reducer which is scheduled to some 
other node present in the same rack. Whereas in 
the off rack traffic the partition is shuffled to the 
reducers which is scheduled in off rack node. 
Hadoop uses the resource monitor to estimate the 
input size for reducers before it gets scheduled in 
the TaskTracker. If the Hadoop job tracker finds 
the TaskTracker which is requesting for reducers, 
doesn't have enough space for reducer then job 
tacker will not schedule the reducer to that 
particular TaskTracker (TaskTracker is rejected). 
Early shuffle is the feature provided by the native 
Hadoop scheduler, reducers get scheduled with 
the mappers running on the node. Mappers which 
are busy generating the largest amount of 
intermediate output need more resources, in such 
scenario, TaskTrackers holding busy mappers 
make a request for reducers is rejected by job 
tracker. Subsequently, the intermediate output of 
the busy mappers has to be scheduled to the 
reducers present in some other node and it 
increases the traffic in the network. Therefore, 
job tracker schedules the reducers to the 
TaskTracker holding busy scheduler in order to 
reduce the network traffic of shuffling the 
intermediate data of large partition.  

LARTS is used to schedule reduce task to 
the TaskTracker so as to reduce the network 
traffic for large shuffled data. MapReduce 
framework is well aware of the memory location 
of the input data for scheduling the map task. 
Whereas, location of the partition generated by 
the map task is not known to the framework, i.e., 
scheduling reduce task is a challenge. Similar to 
the map task, algorithm makes the MapReduce 
aware of network location for scheduling, reduce 
task based on data locality. Network location of 
the intermediate dote will be fully known when 
the all map tasks in the TaskTracker complete. 
Early shuffle of reduce tasks helps in increasing 
efficiency and decreasing the job turnaround 
times. Early shuffle can be initiated after a 
defined number of map task finishes their 
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execution. A sweet spot is defined in the program 
where early shuffle can be initiated. In addition 
to the network location of each partition, a 
MapReduce framework should keep track of the 
size of all partitions in order to schedule reduce 
task based on data locality.  
 Reducer has to be scheduled to the mapper 
generates the partition and better data locality can 
be accomplished by scheduling the reducer at the 
TaskTracker hosting the partition. Maximum-
rack of reducer is defined by the number of the 
rack that holds the maximum number of 
partitions whose accumulated size is larger than 
any other accumulated size of other racks holding 
the partition for the same reducers. In the same 
way, the algorithm defines maximum-node of 
reducer as the node contains the biggest partition 
for reducer at the maximum-rack. Maximum-
rack and maximum-node is calculated using the 
network location and size of partition. In this 
approach, some problem arises, namely, 
scheduling delay, scheduling skew, lower 
parallelism and poor throughput. A scheduling 
delay occurs when the TaskTrackers request for 
reducers simultaneously and gets rejected 
because they fail in the criteria of maximum-rack 
and maximum-node and this situation leads to 
scheduling delays. Whereas, scheduling skew 
occurs because of the variance in the 
TaskTracker being preferred by the reducers. 
Very poor parallelism and poor throughput 
results after a skew in scheduling. LARTS deals 
with the scheduling delay, scheduling skew, 
system utilization and parallelism by 
fragmenting the reduce task among the 
TaskTrackers requesting for the job. Mechanism 
to deal with the above mentioned shortcomings 
is rejection counter, Rejection counter is present 
for every TaskTracker, it increments whenever a 
TaskTracker gets rejected by the job tracker. 
Threshold is present for restricting the number of 
times a TaskTracker gets rejected after that job 
tracker assign reduce task to the requesting 
TaskTracker.  
  

IV. DATA LOCALITY SCHEDULING  
A. A Data Distribution-Aware Scheduling 

Algorithm  
 A data distribution aware task scheduling 
algorithm [4] is the foremost algorithm proposed 
based on data locality. The key point is 

scheduling a task where data is available locally. 
So network communication and data 
transmission rate can be reduced if job tracker 
schedule the task to the TaskTracker having the 
data. Since, moving computation is cheaper than 
moving data. In data distribution aware 
scheduling task is distributed on the slave nodes 
based on data locality.  Scheduling is done based 
on the scheduling priority of each task and the 
node requesting the task. Calculation of 
scheduling priority is the Main module of Master 
Node.  
 The priority scheduler for a task is calculated 
based on three factors, namely, Replica-num, 
WorkerTasklist, and Task-waittime. First, the 
Replica-Num determines the number of map 
tasks those can be executed the local task, i.e., 
when a task will be assigned to TaskTracker, the 
data for that task should be present locally to that 
node. Data is replicated by HDFS [2] over the 
different nodes present in the network. So while 
considering the priority, it considers less priority 
for the task which is having high Replica-Num. 
After that, WorkerTasklist determines the length 
of the localize task list for the nodes saving the 
data to be executed by the map task. If the length 
of localize task is more, then the scheduling 
priority of that task is high. At last, Task-waittime 
determines the time period of a task from the 
starting to the current moment of time. So, task 
whose waiting time is high has the highest 
scheduling priority.  
 Now, computing the scheduling priority for each 
node requesting for the task. Slave node request 
for task through a heartbeat signal and advertise 
free slots. Scheduling priorities of workers are 
calculated using three factors Worker's Local 
Task list, Request-Num and HistoryInfo. So first 
of all, Workers Local Task list is maintained for 
each node. Task present in the list can be 
executed by each worker locally. If node local 
task list is not empty, then scheduling priority can 
be set at maximum. And master schedules task in 
this list of the worker first. Second, Request-Num 
determines the number of requests since the node 
gets the last task. It means a node request for task 
whenever a node is free in every heartbeat signal. 
Count of Request-Num shows that the worker has 
less load and can manage more task. So, bigger 
the Request-name has higher priority. At last, 
history-Info gives the success rate for task 



INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR) 

 

 
 ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-3, ISSUE-11, 2016 

92 

processing on the node. Scheduling priority of 
worker is proportional to the History-Info. With 
this intention, task getting scheduled over the 
node corresponds to the workers, local task list, 
if the worker local task list has some task then it 
has the highest priority. Else the other two factors 
will come into the picture.   

B. Delay Scheduling Algorithm  

Delay scheduling algorithm is a very 
simple technique for accomplish locality and 
fairness in MapReduce scheduling. Fairness can 
be achieved by fair sharing of resources, but strict 
establishment of fair sharing adjust locality, 
because when a request generated by a node 
might not have the data for the task to be 
scheduled next. Hence delay scheduling [6] 
relaxes fairness slightly, in which job waits for a 
limited amount of time before getting scheduled 
on a node that has data for it. Problems related 
data locality while considering fairness is Head 
of line scheduling and Sticky slots.  

Head of line scheduling is the data 
locality issue arises because of small jobs having 
tiny input files leads to less number of input 
blocks, so in fair sharing scheduling, tiny job 
having a minimum number of tasks, next task is 
scheduled on the free slot requesting for the task, 
and it does not consider the node to launch the 
task. However, in sticky slots problem occurs 
even for large job if fair sharing is used. The 
problem is that a slot can be repeatedly assign for 
the same job. The problem arises when jobs are 
sorted according to the increasing order of 
running tasks, one task gets scheduled on one of 
the slot and it finishes. Then the next task of the 
same job will be scheduled back to same slot. In 
consequence, it leads to the situation that jobs 
never leave their original slots. The main idea 
behind delay scheduling is that, even though a 
slot is free and requesting for task irrespective of 
the fact that it contains the data for that task, it 
will be unlikely to assign task to that slot because 
tasks finishes so quickly that some slot with the 
data for it will free up in the next few seconds. So 
delay scheduling along with fair sharing solves 
the problem of data locality.  
 Fair sharing with delay scheduling states that set 
the job with a value , scheduling a non local task 
in the job will be skipped  times until it gets the 
local task, and once it crosses the limit of  times 
then it let the job launch arbitrarily many non-

local tasks without resetting the count of . 
However, once it manages to launch a local task, 
then the value will be set back to 0. Two levels of 
delay scheduling are also proposed, it states that 
first it delay the job by 1 seconds to find a node 
local task, and then it waits till 2seconds to find 
a rack local task. It achieves more level of data 
locality rate compare to the single level of delay 
scheduling because here it is considering the fact 
that data can be accessed through rack locality. 
Initially, it checks for node local task for jobs, 
when it fails to find then it checks for rack local 
task. When it fails to find the node local task as 
well as rack local task, it launches arbitrarily non 
local task. Considering the value of , it cannot be 
set higher because then it will lead to resource 
wastage for the non-local node requesting for the 
task. It cannot be set low because then it will 
work like general fair scheduling algorithm. It 
should be set ideally, means not too high and not 
too low.  

Limitations of Delay scheduling is when 
a large portion of the tasks is much larger than the 
average job, then effectiveness will become less. 
It delays the task by  times, but since larger job 
are assigned to the slots, within that  times slots 
might not become free and it will lead to lower 
utilization.   

C. Data-locality Aware Task Scheduling 
Algorithm  

Data locality is the concern of this [7] scheduling 
algorithm. It takes decisions based on the waiting 
time and transmission time of the task. In brief, 
the idea of this scheduling algorithm is that 
whenever a requesting node request for a task, the 
method selects the task from task list whose data 
is stored on the desired node. If no such task 
encountered, then the method picks a task from 
the list where data are near to the task. The basic 
idea behind calculating the waiting time and 
transmission time is that if the waiting time of 
selected task is less than the transmission time of 
the selected task, then the task will be reserved 
for the node having the data stored in it, otherwise 
it will schedule the task over the requesting node. 
The waiting time of a task stands for the 
remaining time needed to complete the executing 
task on the node having the data stored. Multiple 
task executes in a node simultaneously, hence the 
waiting time for a task having data stored on the 
node is represented by the time taken to finish the 



INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR) 

 

 
 ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-3, ISSUE-11, 2016 

93 

shortest task among all, once the shortest task 
will complete execution the requested task can be 
scheduled. The transmission time for the task 
stands for the time taken to copy the input data to 
the node requesting for task, time rely on network 
communication. Selection of task after getting 
the request from the requesting node is done 
based on the probability calculation when a node 
local task is not present. It maintains the different 
level of the task, when first level tasks do not 
fulfill the condition, it checks in second level and 
then followed by the third level. The probability 
gets calculated so that they can be scheduled 
according to their probability. Task with high 
probability gets chance to be scheduled first on 
the requesting node, whereas the task with low 
probability get reserved for the node storing their 
data.  
D. MatchMaking  

 The key idea of the matchmaking technique [8] 
is to assign tasks to a TaskTracker, the local map 
task is always preferred over other map task. To 
avoid network transmission rate the local task a 
preferred over non local task. Another technique 
used by matchmaking is a locality marker. 
MatchMaking marks the node and ensure that 
each node gets the fair chance to grab it local 
task. Scheduler grants the request based on the 
heartbeat signal generated by the requesting slave 
nodes, so data locality is randomly decided by the 
heartbeat sequence of slave node. In such 
scenario where large cluster is present with small 
jobs then data locality rate could be quite low.  

The matchmaking scheduling main idea 
is to assign tasks based on locality. It makes sure 
that each slave node should get a fair chance to 
grab the task for which data is stored in the node 
before any task gets assigned to it. When a local 
map task is not found in the first job, then the 
scheduler will continue searching in the 
succeeding jobs. Whenever it finds a local map 
task, it schedule the map task over the node 
requesting for the task.  
 Slave nodes should get fair chance to grab the 
node local task, when a node fails to find a node 
local task, it doesn't launch the non-local task, 
else it waits for some time and request again for 
node local task. The main idea behind is, tasks 
finish very fast so when a node wait for one 
heartbeat signal, the other nodes also finish their 
execution and node local task gets available. To 

avoid wasting of resource by keeping the node 
ideal, the non-local task will be assigned to in the 
next heartbeat. Matchmaking scheduling allows 
a slave node to take at most one nonlocal task in 
every heartbeat. Matchmaking scheduling 
achieves high data locality and high cluster 
utilization. Matchmaking scheduling uses a 
Locality marker assigned to every slave node, it 
keeps track whether a local task is launched in the 
slave node within that heartbeat signal, if not then 
in next heartbeat signal a non-local task will be 
assigned to the node.  

E. Context-Aware Scheduler in Hadoop (CASH)  

 In MapReduce framework, Job scheduler is the 
key component as it decides and controls when 
and where a job task get executed. Context aware 
scheduler in Hadoop [10] design principles is 
that, firstly a large percentage of MapReduce 
jobs are periodic in nature. It means the largest 
number of jobs, having roughly the same 
characteristics and execute at the same time. 
Secondly, Hodoop cluster contains 
heterogeneous nodes that means the computation 
and disk capabilities of the nodes present in the 
cluster are not same. It happens because more 
nodes are added in cluster with time and old 
nodes are replaced, so the Hadoop cluster 
becomes heterogeneous in nature. The context of 
the node should be known before we schedule the 
job. Context aware scheduling knows the context 
of the job, job characteristics (CPU or I/O bound) 
and the resource characteristics computation or 
I/O strength of the node in the cluster.  
 CASH implementation in Hadoop can be done 
in few steps. Initially, Classify the jobs as CPU 
bound or I/O bound, CPU bound jobs are more 
computation and processing oriented where as 
I/O bound jobs are Input output oriented. Job 
classification is done using the summary logs, 
whenever a new job runs for the first time and 
finish execution a log is maintained. From logs it 
can be obtained that whether Map Reduce I/O 
rates are less than the Disk I/O rate, then it can be 
classified as CPU bound job, otherwise, it can be 
classified as an I/O bound job. Secondly, Classify 
the nodes as computational or I/O good. 
Classification of node can be done by running the 
CPU and I/O benchmark on each node 
respectively. If the CPU benchmark is more 
compared to the I/O benchmark for a node than 
that node is classified as computational good or 
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else classified as I/O good. Lastly, scheduling the 
task of the job with different demands to the node 
which can meet the demands, CPU bound job to 
the computational oriented node where as I/O 
bound job to the I/O oriented node.   

The CASH scheduler schedules task of 
jobs based on the both data-locality and 
requirement match. While classifying the node, 
some node appears to be average in CPU and 
Disk then it schedule jobs randomly based on 
FIFO order. Initially job is executed in FIFO 
order to get the job summary logs, to classify the 
jobs as CPU bound or I/O bound. In the preferred 
algorithm, the scheduler searches for the Map 
task which fulfills both locality and the 
requirement of the node. If both criteria fulfill 
then schedule the map task to that node. Else if 
no data local task found, then scheduler search 
for the non-local task with the match 
requirement. Whereas for reduce task scheduling 
it does not consider the data locality, and searches 
for the task fulfilling the node requirements. 
Sometimes requirement does not match, then it 
schedules task based on data locality. If nothing 
matches, then it schedule task based on FIFO 
order.  

V. RESOURCE-CONTENTION 
SCHEDULING  

A. Towards a Resource Aware Scheduling  
 In the Hadoop cluster (2009) [3], many users 
submit the job simultaneously because the 
Hadoop cluster is distributed in nature. This 
algorithm deals with the improving resource 
utilization when different kinds of user submit 
jobs on the cluster. Generally, Hadoop scheduler 
is not aware of the nature of the job submitted and 
Hadoop scheduler prefers to run a map task of the 
job present on the top of the job queue. Job 
tracker assigns tasks to the TaskTrackers when 
TaskTracker has a free slot and request for a task. 
So, in simple Hadoop job tracker assigning tasks 
to the TaskTracker has some limitations. Firstly, 
the allocation of the task to the node having data 
is done by the job tracker without considering the 
workload of the node and the availability of the 
node. Secondly, when the task is assigned to 
TaskTracker, and job running on TaskTracker 
becomes slow, then job tracker cannot keep track 
of such task.  

 TaskTracker tracks the resources in Hadoop has 
some weakness. Firstly, it fails to monitor the 
capacity and load level of individual resources 
present in TaskTracker nodes. Secondly, it fails 
to utilize the available resource matrices guide to 
take decision for scheduling task. An improved 
scheduler [3] is proposed to overcome the above 
mentioned drawbacks. It monitors the resource 
available in every node and takes the decision 
based on the resource matrices. TaskTracker 
resource monitoring is used to monitor the 
resources in the TaskTracker level, Each 
TaskTracker monitors resource in the node such 
as CPU utilization, disk channel, I/O and number 
of page faults per unit time for the memory 
system.  
 In job tracker it uses resource matrices to 
schedule task into the node requesting for tasks. 
Firstly, Dynamic free slot advertisement, it 
means the TaskTracker node contains a fixed 
number of available task slots, but using resource 
matrices it computes the free slots dynamically. 
Secondly, free slot priorities, in this mechanism 
the fixed number of computational slots present 
in every node is retained and instead the order in 
which TaskTracker node will advertise its free 
slots will be decided based on their resource 
availability. Lastly, Energy efficient scheduling, 
the energy consumption in the scheduler is less 
than the consumption of energy in the Hadoop 
basic scheduler.  

B. Natjam  

 Natjam system [15], provides random job 
priorities, hard real-time scheduling and efficient 
preemption for MapReduce those are resource 
constrained. In the MapReduce framework jobs 
comes with difficult priority, high priority job 
(short completion time) and low priority jobs 
(long completion time) the traditional way to 
solve the problem of priority is setting different 
clusters, which later lead to the inefficient 
resource utilization and long job finish time.  
 The algorithm aims, 1. To run all the types of 
job, regardless of priority, completion time in the 
same MapReduce cluster. 2. Attain a lowest 
completion time for higher priority jobs. 3. 
Optimizing completion times of lower priority 
jobs. The mentioned goals are attained using 
Natjam algorithm.  

 



INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR) 

 

 
 ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-3, ISSUE-11, 2016 

95 

C. CooMR  

 The available slots in the processor are 
represented as free map and reduce slots, and 
assign them to different tasks. The cross-task 
coordination CooMR is designed for efficient 
data handling in MapReduce programs. The 
CooMR [19] leads to increase task coordination, 
enhance system resources throughput and 
significantly enhance the process time of 
MapReduce jobs. MapReduce programs face two 
key performance issues, namely, task 
interference and excessive I/O. Task interference 
can cause prolonged execution time for map 
tasks. Whereas excessive I/O can degrade the 
disk I/O bandwidth.  

D. A Load-aware Scheduler  

Dynamic loading [26] of job always been 
an issue in the Hadoop scheduler, so a new 
scheduler load aware scheduler is proposed. It 
comprises of two modules, namely, data 
collection module and the task assignment 
module. Data collection module gathers the 
system level information periodically from the 
TaskTracker. Whereas task assignment module 
makes the scheduling decision according to the 
TaskTrackers info collected by the data 
collection module.  

E. MOMTH  

 The multiobjective considered in this algorithm  
[20] is related to the user, resources and with 
restraints like deadline and budget. 
Transformation of sequential task is needed to 
lessen the execution time & to diminish the 
resource requirement. The main difference 
between the single objective and multiobjective 
approach is the requirement condition and the 
alteration of an objective in the fields. The 
MOMTH algorithm has two main objectives. 
First, having an optimal work assignment in the 
cluster and avoiding resource contention. 
Second, to complete tasks within budget and 
meet deadlines.  

F.    CSRA  

Data skewness is the one of the major reason of 
straggler emergence and makes data assignment 
to reducer imbalance. The main objective of 
CSRA [27] is to reduce execution time and 
coefficient of variation by changing the order of 
task list and dividing the big clusters. CSRA has 

less overheads and increase the execution time of 
applications. CSRA (cluster splitting based on 
resource allocation algorithm) mainly focuses on 
fixing the problem with data skew.  

E. Dynamic Reduce Task Adjustment for 
Hadoop  
Workloads  

The challenging aspect [28] of executing 
the Hadoop job is the management of reduce task. 
The algorithm proposes, first an approach for 
calculating the appropriate number of reduce 
tasks per job. Second, usage for profile job in 
gathering information for the reduce task 
computation and third, two different policies for 
fragmenting the reduce task to the available 
system resources when multiple jobs execute 
concurrently in the cluster. Appropriate number 
of reduce task is calculated using the historical 
information regarding the input data sets.  

VI. PERFORMANCE MANAGING 
SCHEDULER  

A. Joint Optimization of Overlapping Phase in 
MapReduce  

 This algorithm [14] deals with the problems 
occur when map & reduce phase, execute in an 
overlapping manner. MapReduce phase like 
Map, shuffle \& reduce phase works in such a 
way that the output of one phase becomes the 
input to another phase. So, it becomes 
challenging to schedule and allocate resources in 
complex and critical MapReduce system. It uses 
shortest remaining processing time (SPRT) first 
scheduling algorithm minimizes average 
response time within a single server. So, map task 
with large shuffle size completed first to avoid 
wastage of resources.    

B. Busrtiness-aware I/O Scheduler  

 Virtual environments like cloud computing and 
virtual cluster are popular recently because of the 
low cost and flexibility. In this algorithm [16] a 
burstiness-aware I/O scheduler is proposed.  
Long seek distances in a disk leads to I/O 
interference and then it leads to numerous 
context switches in the virtualization software. 
For utilizing the I/O bandwidth without 
interference, the proposed scheduler encounters 
I/O burstiness of a virtual machine on-line. The 
key idea of the scheduler is to schedule the 
identified bursty virtual machines with a 
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comparatively big time quantum in round robin 
fashion and to avoid the starvation situation I/O 
bandwith for the non-bursty virtual machine is 
used.  

C. DynMR  

 DynMR algorithm [17] is used to improve the 
performance of MapReduce, it lists some 
problem present in the existing MapReduce 
implementation. 1. Optimal performance 
parameter is challenging to select for a single job 
in a dedicated environment. In multijob cluster it 
lacks the efficiency to construct parameters that 
can behave optimally. 2. Long job execution 
leads to taileffect. 3. Hardware resources in 
inefficiently used. DynMR uses the interleave 
way of execution where several partially 
completed reduce tasks and map tasks executes. 
It consists of three components. 1. Detection of 
underutilized resources in the shuffle phase and 
give up the allocated hardware resources 
efforlessly to the next task. 2. All the reduce task 
is assembled in progressive queue and execute in 
interleave rotation. 3. Merges the threads of all 
partial complete reduce task, it allows to keep the 
data segment of multiple reduce task in one JVM 
heap.  

D. Throughput Driven Scheduler  

 The native Hadoop scheduler are not job-
intensive scheduler so provided less throughput. 
So the algorithm proposes a way for improving 
throughput using jobintensive scheduling. A 
novel job scheduling technique is proposed, 
Throughput driven [29] task scheduler for 
obtaining high system throughput in the job-
intensive MapReduce environment. The 
algorithm summarizes several aspects which can 
impact throughput of a job intensive MapReduce 
environment. High ratio is attained for local task 
assignment using throughput driven task 
scheduler, and full advantage of the system 
resource can be attained effectively.  

E. ARIA  

 The issue in shared MapReduce cluster [30] is to 
keep track of the resource allocation of different 
applications for achieving their performance 
goal. With native Hadoop scheduler, no such job 
scheduler is present that can appropriately 
allocate the resources to the job once given a job 
completion deadline. The proposed algorithm 

called AIRA deals with the above mentioned 
problem. ARIA consists three interrelated 
components. Initially, a job that is frequently 
executed on a new dataset, job profile is 
maintained which contains the info about Map 
and Reduce tasks. Lastly, the MapReduce 
performance model is made for estimating the 
amount of resources for job completion.  

VII. RECENT SCHEDULING 
ALGORITHMS  

MapReduce scheduler is the emerging area for 
many researchers, scheduling algorithm based on 
data locality, performance manager, speculative 
task execution and resource contention is as 
follows.  

A. Job aware scheduling algorithm for 
MapReduce framework.  

 The approach [11] is proposed to decrease the 
runtime of the MapReduce jobs running in the 
cluster. When some task running on the node and 
other task appears, then scheduler tries to allocate 
the task to the node if it doesn't affect running 
one. The algorithm selects the compatible task 
from the pending list of the task to the already 
running task in the Node. The proposed 
algorithm achieve low runtime by avoiding the 
overload to a node.  The proposed algorithm tries 
to monitor the usage of resources in each task and 
each node. Using the intelligent scheduling the 
algorithm tries to maintain stability at node and 
cluster level.  

B. Resource-aware adaptive scheduling for 
MapReduce cluster  

 In the Hadoop native scheduler, the static 
number of execution slots is examined to 
determine the capacity of the cluster. But the 
native scheduler fails to get the individual 
requirement of the each job. The resource aware 
adaptive scheduler [12] gets the job requirement 
through the job profiling and adjust the number 
of slots on each machine. The capacity 
calculation in the Hadoop cluster is the function 
of the task can run concurrently in the system.  
  

C. Improving MapReduce performance in 
heterogeneous network environments and 
resource utilization   

In the MapReduce framework when some slots 
are idle and task is scheduled based on data 
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locality, the resource reserved for the task will be 
wasted if no such task present at that moment. 
The algorithm propose [13] the concept of 
resource stealing, which enables running task to 
steal utilized resource and return when new task 
will be assigned. It helps in increasing overall job 
execution time and resource utilization.  
D. A case study of MapReduce speculation for 

failure recovery  

 The existing Hadoop framework has some major 
drawback which hinders the efficiency of job 
execution during the recovery of failure, which is 
termed as speculation breakdown. So, failure 
aware speculation scheme is suggested to solve 
the problems related to speculation.  
 To overcome the problem of speculation 
mechanism, the proper examination of the 
existing speculation mechanism is done. First 
[18], it examines the impact and implication of 
failure in node using the current speculation 
mechanism. Second, it introduces new 
speculation scheme FARMS. Last, it uses a fast 
analytic scheduling algorithm to work with 
YARN, which adds resilience to the 
heterogeneous real-world environment.  
  
E. Map task scheduling in MapReduce with 

data locality: Throughput and Heavy-
Traffic optimality   

 MapReduce program shows high performance 
and utilization when the task present in the 
program scheduled based on data locality. Some 
limitations present in the MapReduce cluster 
while scheduling based on data locality. Traffic 
optimal algorithm [21] (2016) is proposed along 
with that it focuses on the right balance between 
data locality and load balancing to 
simultaneously maximize throughput and 
minimize delay.  
 Based on the stochastic process model the map 
task arrives at the beginning of each time slot will 
be scheduled. The algorithm also provides 
support for backlogged tasks.  

F. HScheduler  

On MapReduce cluster, the execution time of the 
job depends on the way the map task is 
scheduled, the overall make span and the 
resource utilization depends on the scheduling of 
the map and reduce tasks. The goal of 
HScheduler [22] is to design the MapReduce 

scheduler, which reduces the make span of the 
jobs.  
 So, the algorithm provide a new modeling and 
scheduling approach for multiple MapReduce 
jobs, proposed online and offline both type of 
scheduling approach.  

G. Shortest remaining time first policy (STRF)    

 Native Hadoop [23] scheduler faces the problem 
of how to reduce makespans by reducing job 
waiting time and execution times. Native 
scheduler, improves execution time by 
considering waiting time. STRF algorithm is 
proposed in the shared Hadoop cluster shortest-
remaining time first (SRTF) in shared Hadoop 
cluster, estimates the remaining time of a job and 
preempt job whenever needed.  
  
F.     Towards efficient resource provisioning in 
MapReduce  The key objective of the algorithm 
[24], for any work assigned in Hadoop 
MapReduce is to attain optimal number of task 
resources. Algorithm proposes the standard 
method for calculating the optimal number of 
tasks for any work assigned in Hadoop 
MapReduce. For optimal resource provisioning 
for any MapReduce workload, the algorithm 
develops a job profiling method of getting the 
runtime samples of the cluster. The algorithm 
provides stepwise computation processes with a 
mathematical formula for the runtime graph 
function. The algorithm is designed for best 
trade-off point for a work assigned as input and 
output the exact recommended number of task 
resources.  

VIII. CONCLUSION  

Finally, we conclude that many works have 
been done so far to enhance MapReduce 
execution time. Moreover, we have discussed a 
small change can lead to drastically change in 
MapReduce performance. We have also 
discussed many issues related MapReduce 
scheduler. Furthermore, this article provide 
insight on the recent development of MapReduce 
scheduler.                                          
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