

 ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-4, ISSUE-10, 2017

162

A COMPARISON OF LINUX CONTAINER AND VIRTUAL
MACHINES

Prateek Jain
B.Tech 4th Year (CSE), Quantum School of Technology, Roorkee, Uttarakhand, India

Abstract
In the new era of Cloud computing world
virtualization plays a vital role in isolating
different resources which leads an
organization to easily handling of its services
however extra load of abstraction involved in
virtualization reduces workload
performance, which passed onto customer as
worse experience. The advantage of container
is that we can easily create copy of services as
per the requirement while running that
service. In this paper, we explore the
performance evaluation of Linux containers
and Virtual Machines. We compare them on
the basis of launching time, memory and
backup of system. We use virtual box as a type
2 Virtual Machine and Docker as a container
manager. My result shows that the
performance of container will be better or
equal than the performance of VMs in almost
all cases.
Keywords: Virtualization, Virtual Machines,
Docker, Instance, Performance etc.

I. INTRODUCTION

In last few years Virtual Machines are used in
large scale due to the Cloud computing. For
providing services like Infrastructure-as-a-
service(IaaS) vendors generally, use Virtual
machines. Cloud platforms like Amazon, Azure,
OpenStack make VMs available for its
customers for running services like servers and
databases. Many services like Platform as a
service(PaaS), Software as a Service(SaaS),
Network as a Service (NaaS) etc runs inside a
VM with all their workload. The performance of
VMs leads to the performance of overall Cloud
services.

Container-based virtualization presents an
interesting alternative to virtual machines in the
cloud.[1] Virtual Private Server providers, which
may be viewed as a precursor to cloud
computing, have used containers for over a
decade but many of them switched to VMs to
provide more consistent performance. Although
the concepts underlying containers such as
namespaces are well understood[2], container
technology languished until the desire for rapid
deployment led PaaS providers to adopt and
standardize it, leading to a renaissance in the use
of containers to provide isolation and resource
control. Linux is the preferred operating system
for the cloud due to its zero price, large
ecosystem, good hardware support, good
performance, and reliability.

In this paper, I will analyze the performance of
VM and containers by adding some workload
like web servers, memory taken in first boot.
Here I am not using type 1 Hypervisor like
KVM, Microsofts Hyper-V, VMware ESX but I
will use type 2 Hypervisor VM Oracle Virtual
Box. I will not evaluate the case of containers
running inside VMs or VMs running inside
containers because we consider such double
virtualization to be redundant (at least from a
performance perspective). The fact that Linux
can host both VMs and containers creates the
opportunity for an apples-to-apples comparison
between the two technologies with fewer
confounding variables than many previous
comparisons.

II. BACKGROUND

A. Motivation and requirements for cloud
virtualization
Unix traditionally does not strongly implement
the principle of least privilege, viz., “Every

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

 ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-4, ISSUE-10, 2017

163

program and every user of the system should
operate using the least set of privileges necessary
to complete the job.” and the least common
mechanism principle, viz., “Every shared
mechanism ... represents a potential information
path between users and must be designed with
great care to be sure it does not unintentionally
compromise security.”[3]. Most objects in Unix,
including the file system, processes, and the
network stack are globally visible to all users. A
problem caused by Unix’s shared global file
system is the lack
of configuration isolation. Multiple applications
can have conflicting requirements for system-
wide configuration settings. Shared library
dependencies can be especially problematic
since modern applications use many libraries and
often different applications require different
versions of the same library. When installing
multiple applications on one operating system
the cost of system administration can exceed the
cost of the software itself. These weaknesses in
common server operating systems have led
administrators and developers to simplify
deployment by installing each application on a
separate OS copy, either on a dedicated server or
in a virtual machine. Such isolation reverses the
status quo compared to a shared server with
explicit action required for sharing any code,
data, or configuration between applications.
Irrespective of the environment, customers want
to get the performance they are paying for.
Unlike enterprise consolidation scenarios where
the infrastructure and workload are owned by the
same company, in IaaS and PaaS there is an
arms-length relationship between the provider
and the customer. This makes it difficult to
resolve performance anomalies, so PaaS
providers usually provision fixed units of
capacity (CPU cores and RAM) with no
oversubscription. A virtualization system needs
to enforce such resource isolation to be suitable
for cloud infrastructure use.
B. Type 2 Virtual Machines
A Virtual Machine is a software virtualization
package that installs on an operating system as
an application. Virtual Machine allows
additional operating systems to be installed on it,
as a Guest OS, and run in a virtual environment.
VirtualBox[4] is one of the most popular
virtualization software application. Supported
operating systems include Windows
XP, Windows Vista, Windows 7, macOS

X, Linux, Solaris, and OpenSolaris. These type
of Virtual machines are mostly dependent on the
size of RAM installed on the system.
C. Linux Container
Rather than running a full OS on virtual
hardware, container-based virtualization
modifies an existing OS to provide extra
isolation. Generally, this involves adding a
container ID to every process and adding new
access control checks to every system call. Thus
containers can be viewed as another level of
access control in addition to the user and group
permission system. In practice, Linux uses a
more complex implementation described below.
Linux containers are a concept built on the kernel
namespaces feature, originally motivated by
difficulties in dealing with high-performance
computing clusters.[5] This feature, accessed by
the clone() system call, allows creating separate
instances of previously-global namespaces.
Linux implements file system, PID, network,
user, IPC, and hostname namespaces. For
example, each file system namespace has its own
root directory and mount table, similar to
chroot() but more powerful.

III. EVALUATION

All the tests were performed on a Dell System
Inspiron 3542 with two 1.7 GHz Intel core i5
processors. The system had 8 GB of RAM. I had
used Red Hat Linux 7.3 64-bit with Linux Kernel
3.11.0, Docker 17.06, For consistency, all
Docker containers used CentOS 7 base image
and all VMs used RHEL 7.3 ISO image. RAM
allotted to the Operating system running on the
VM is 4 GB.
TABLE I. Comparison between Virtual
Machine and Linux based Containers

 Virtual
Machine

Container
(Docker)

Time taken in
launching a

instance

>20 min. < 2 sec.

RAM uses after
boot

200 mb. 10 mb.

Backup of
Instance

No Yes

Backup
Portability

No Yes

Kernel Own Shared by
base OS

GUI Yes(Optional) No

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

 ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-4, ISSUE-10, 2017

164

IV. CONCLUSION
In this paper, I had discussed about Virtual
Machines and Linux based containers. We know
that though Containers have some limitation but
even after its good to use containers in place of
Virtual Machines for some light weight
applications.

Reference
[1].Stephen Soltesz, Herbert Potzl, Marc E.
Fiuczynski, Andy Bavier, and ¨ Larry Peterson.
Container-based operating system virtualization:
A scalable, high-performance alternative to
hypervisors. In Proceedings of the 2nd ACM
SIGOPS/EuroSys European Conference on
Computer Systems 2007, EuroSys ’07, pages
275–287, 2007.

[2].Rob Pike, Dave Presotto, Ken Thompson,
Howard Trickey, and Phil Winterbottom. The

Use of Name Spaces in Plan 9. In Proceedings of
the 5th Workshop on ACM SIGOPS European
Workshop: Models and Paradigms for
Distributed Systems Structuring, pages 1–5,
1992.

[3] Jerome H. Saltzer and Michael D. Schroeder.
The protection of information in computer
systems. In Proceedings of the IEEE, volume 63,
Sep 1975.

[4].Ivan Sabolski, Hrvoje Leventić, Irena Galić
Performance Evaluation of Virtualization Tools
in Multi-Threaded Applications Volume 5,
Number 2, 2014

[5]. E. W. Biederman. Multiple instances of the
global Linux namespaces. In Proceedings of the
2006 Ottawa Linux Symposium, 2006.

