

 ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-4, ISSUE-11, 2017

21

AN INNOVATIVE APPROACH FOR ASYNCHRONOUS
MICROPROCESSOR DESIGN BASED ON FPGA

Archana Rani1, Dr. Naresh Grover2
Faculty of Engineering and Technology, Manav Rachna International University, Faridabad, India

Abstract
As the efficiency and power consumption
plays an important role in electronic system
design, an asynchronous design is used to
reduce such challenges faced in synchronous
architectures. The asynchronous processors
have a number of advantages, especially in
SoC (System on chip) including reduced
crosstalk between analog and digital circuits,
ease of integrating multi-rate circuits, ease of
component reuse and less power consumption
as well. This paper deals with the novel design
and implementation of such type of
asynchronous microprocessor by using
VHDL on Xilinx ISE tool wherein it has the
capability of handling even I-Type, R-Type
and Jump instructions with multiplier
instruction packet. Moreover, it uses separate
memory for instructions and data read-write
that can be changed at any time.

Index Terms: Asynchronous design,
Processor, VHDL, MIPS, Synthesis &
Simulation, Instruction data path, EDA Tools

I. INTRODUCTION

Now- a- days computers are evolving using
RISC (Reduced Instruction Set Computer)
Architecture replacing stack architecture with
the intention to displace the hypothetical,
emulated computer by a real one. Instruction Set
Architecture (ISA) design is the concept of CISC
(Complex Instruction Set Computer) that
emphasize more on each instruction using a wide
range of addressing modes and number of
operands in various locations in its Instruction
Set. This leads to execution time to vary as
instructions are not of fixed length, hence
demanding a very complex Control Unit, which

occupies a large area on chip. While on the other
side, the RISC Processor has less number of
Instructions. The fixed instruction length with
more general purpose registers to support load-
store architecture and simplified addressing
modes. This makes individual instruction to
execute faster in order to achieve a net gain in
performance and an overall simpler design with
less silicon consumption. The choice of an RISC
has become more obvious with the increase in
size and complexity of modern processors and
software. The hardware designer has a
substantial amount of freedom for design by
making use of FPGA being much more aware of
availability of resources and of its limitations
than the software developer.

 Before commencing the design of an

asynchronous processor we have to first focus on
the architecture of Asynchronous processor as
well as the various steps involved in such designs
in terms of the program cycle. This paper
presents processor architecture design, its
implementation followed by processor
instruction set, data path flow for fetching unit,
Register type, I-type and load /store type
instruction flow. Thereafter this paper illustrates
control unit design of processor that shows the
controlling of signals for different units in
processor design. Further, a complete internal
structure is shown followed by features of novel
processor architecture. In the end, results have
been shown using implementation windows. The
complete design has been written using VHDL
and then simulated and synthesized by XILINX
ISE tool.

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

 ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-4, ISSUE-11, 2017

22

 6 5 5 16

6 5 5 5 5 6

A. Processor Architecture
The asynchronous processor internal

operation is segmented into five pipeline stages
and in each of them the operations of the tasks
will be performed in the normal cycle of an
instruction, i.e. search of the instruction
(identified with the IF block), decoding of The
instruction (identified with the ID block),
execution of the operation (identified with the
EX block), memory access (identified with the
MEM block) and storage of the operation result
(identified with the WB block) [24].

Fig 1: Processing Stages

The first stage is Instruction Fetch that comprises
of Instruction Memory, Program Counter, and
Instruction Register. In this stage, a program
counter will extract the next instruction from a
location in program memory. It updates the
program counter value with the next instruction
location sequentially or the location determined
by a branch. The second stage is instruction
decoding which comprises of register file and the
extender (sign & Zero). This stage determines
the values on which the control lines should be
set as per the instruction. The third stage is the
instruction execution stage, where ALU and
necessary parts will come into action. In this
stage, the instruction is actually sent to the ALU
and branch locations are also calculated. The
fourth stage is Memory execution stage for
accessing of data from system memory. Finally,
in Write back stage the values/data written back
to the register(s).

B. Instruction Set Format

The Asynchronous Processor has fixed
width instructions (32- bit). There are 3
instruction types: I-type (Immediate), R-type
(Register), J-type (Jump). Fig. 2 shows the
format of I-type and R-type instructions. [23]

Opcode RS RT Address/immediate

Fig 2(a) I-Type Instruction

Opcode RS RT RD Shift Function

Fig 2(b) R-Type Instruction

MIPS (Microprocessor without
Interlocked Pipeline Stages) are load/store
architecture, meaning that all operations are
performed on values found in local registers. The
main memory is only accessed through load
(copy value from memory to local register) and
store (copy value from local register to memory)
instructions.

 The fields in the MIPS instructions are
the followings:
• OPCODE – 6-bit operation code
• RS – 5- bit specifier for source register
• RT – 5- bit specifier for target register
• RD – 5- bit specifier for destination register
• Address/immediate – 16-bit signed immediate
used for logical and arithmetic operands,
load/store address offsets
• Shift – 5-bit shift amount
• Function – 6-bit code used to specify functions

II. Instruction Implementation
Every instruction propagates in a

specified sequence such as fetch, decode,
execution & write back. There are three types of
instruction(s) in processor/controller based
system. These are I-Type, R-Type and Jump type
instruction. The different type of instruction data
paths has been depicted in figures 3, 4, 5 and
6.Figure 3 shows the data path for the fetching
process. It depicts the flow of the various path
involved in fetching. The figure 4 and 5 shows
the register/memory pattern follows during the
Register/Immediate type instruction execution.
And at last figure 6 depicts the overall combined
path flow for all type of instruction execution
data path.

A. Fetch Data path Flow
Figure 3 shows the Fetching of an instruction
from memory. The PC (Program Counter)
always indicates the location of the instruction to
execute. The location is basically an Internal
ROM where all instruction (to be executed) are
stored at different locations. Once the PC fetches
an instruction from its current value, the PC

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

 ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-4, ISSUE-11, 2017

23

address automatically advances by 4. The order
of the PC can be changed by the occurrence of
the instruction stored in the memory block.

Fig 3: Fetch Data path

B. Register Type Data path Flow
The register type instruction(s) is the

instruction involved with the data to be
communicated to and fro from the internal
(general purpose registers)/external registers
(RAM). After being fetched, the instruction is
bifurcated into fields i.e. Opcode
(Store/shift/Add etc.), source and destination
register location/data with some controlling
signals named register write or read registers.
Then the data or value of the specified register
location will propagate through ALU for
different operations to be performed.

Fig 4: R-Type Data path Flow
C. Load/Store Datapath Flow

Figure 5 shows the data path flow for the
immediate instructions to load and store at
various location, these locations may be any
general purpose or any memory locations that
can be addressed randomly.

D. Multiple Instruction Datapath Flow

Table 1: Action for all instructions

Table 1 shows all actions necessary for the
execution of an instruction (of any type) during
each stage(s). To differentiate the type of
instruction we had design one control unit which
takes care of overall operation execution cycle.

E. Control Unit Design
The design of control unit has been

divided into various states through which it is
going to generate the control signals for other
components in the design, based on the current
state and on the instruction code. Following are
the control signals:
MemRead: if 1, read from memory;

MemWrite: if 1, write to memory;

RegDst: if 1, the destination number for the

Write register comes from the Rd field; if 0, it

comes from Rt field;

4

Add
+

Address

 Memory

PC

Instruction

ALU Operation

Add

Read Reg1

Read Reg2

Write Reg Read

Data1

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

 ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-4, ISSUE-11, 2017

24

RegWrite: if 1, the general-purpose register

selected by the Write register number is written

with the value of the Write data input;

AluSrcA: (ALU Source A) if 1, the operand is A

register; if 0, the operand is PC;

MemtoReg: if 1, it comes from Memory data

register (MDR) and if 0, the value fed to the

register file Write data input comes from

ALUOut;

IRWrite: if 1, write instruction is performed in

IR; PCWrite: if 1, update the PC;

The control unit is basically the part of
our 32-bit asynchronous processor. The
complete designs of processor architecture have
been distributed into small units. Proposed
design has various sub modules which are
basically named as ALU control unit, RAM /
ROM blocks, PC unit, Shift, Add, Multiplier
units for various arithmetic and logical
instruction. In the end, interfacing module for all

the sub units is designed. As each unit has their
own significance, the major role played by the
control unit is to command/control the overall
operation. Hence more emphasis has been given
to this unit.

E. Processor Architecture
 This section deals with the complete
internal structure of our 32-bit Asynchronous
Processor. All the various stage(s) required for
an instruction processing is been identified by
the call out(s) box(es). Figure 7 shows the
internal architecture of Asynchronous processor,
In this processor, fetching the instruction pointed
by the Program counter goes to the next unit
called decoder which generates the different
values of the memory location, as per the
instruction fetched from the previous unit.
During this control unit has been designed in
order to synchronize the various other units such
as ALU, data memory or general purpose
registers to properly execute the desired
instruction. There are other units named as ALU,
data memory, and some multiplexers to complete
the execution cycle. The entire major units have
been discussed previously.

Fig 7: Internal Structure of the Processor

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

 ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-4, ISSUE-11, 2017

25

III. Features of Novel Processor

 The 32-bit asynchronous processor has
the capability of handling all types of
instructions i.e. I-Type, R-Type, Jump
Instructions and also multiply instructions
packet. The multiplied result is stored until is
needed irrespective of other instructions follows.

The proposed processor is using separate
memory for instructions and Data. The capacity
of instruction memory i.e. ROM is of 8192*32 in
which 8192 are representing the locations where
instructions are to be stored with 32-bit data. The
structures of instructions are as per ISA
(instruction set Architecture). For all stages,
there is only one clock cycle needed, while the
data memory has the capacity of 64K. Both
memories are functioning in falling pulse. The
other pulses are used for developing the
necessary functions just like pipelining in order
to make our processor core faster and much
flexible.

All I-type instructions are part decoded in

the first stage and all R-type instructions are part
decoded in ALU control unit. This reduces the
complexity in main control unit. The complete
processor core is designed in Xilinx ISE 14.x
tool.

The so far studied processor architectures
do not contain all instruction in a single
architecture especially (Jump & Multiply
instructions). Also while designing the whole
processor core much more attention is given to
design the proposed processor in such a way to
optimize the core for much better results in terms
of Area, Power or Delay.

IV. Design Implementation

 The complete processor has been
implemented on the Xilinx ISE tool. All the
coding have been done in VHDL and simulated
or verified by the XILINX ISIM. The following
windows come from Xilinx simulator for various
instructions Stored in Instruction memory.
Figure8 shows the project settings i.e. the target
family Virtex-6, with device name
XC6Vlx240T.

Fig 8: Project setting window in Xilinx ISE

A. Instruction Memory Window
Figure 9 shows the various instructions written
into internal memory. From which PC fetches
the instruction to be executed. In figure 10 the
table shows the complete structure of the
mnemonics for asynchronous processor
instruction. The order of instruction execution
can be changed as per the designers or consumer
requirement. Although once written in
Instruction memory the order of the execution of
instruction will be as per the order of the
mnemonics appears. The Instruction memory is
also known as code memory /ROM where all the
instructions are going to be stored permanently.
The overall execution of any instruction is
always been started by the code/instruction
memory. In the below figure we have shown
some instruction mnemonics although we can
store /provide various instruction up to 32 KB i.e.
8192 memory location available and on each
location one can store up to 32 bit of data. Also,
we are having 32*32 register for temporary
storage of the output or any general purpose
work. This is shown in figure 10.

Fig 9: Instruction Memory inferred in Xilinx

ISE Tool.

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

 ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-4, ISSUE-11, 2017

26

Mem
ory

Addr

Instruct
ion

Instruction Field

O
P-
op
co
de

RS

So
urc

e
reg

i

RT R
T
d

Sh
am

t

Fu
nc

00 Sw
$s1,100(

$s2)

10
10
11

11
10
0

010
01

0000000001
100100

04 Lw
$s1,100(

$s2)

10
00
11

11
10
0

010
01

0000000001
100100

RS-Source register, RT-Destination register,
RTD-Destination register, Shamt-Shift amount,

Func- Function
Fig 10: Mnemonics of Instruction

B. Register Bank Window

Figure 11 shows the internal register
bank arrangements of the designed processor. By
default, all the values in registers are (in 32-bit
Binary) "0000000000000000000000000000".
We kept some values during the operation of
addition and subtraction so that we never get zero
as an output. There are thirty-two, 32-Bit
registers to temporary hold the data. These
registers can be used in any type of addressing
modes i.e. Immediate, Register Direct or Indirect
addressing modes. The values in the
corresponding registers will automatically
update once the instruction will be fetched and
executed.

Fig 11: Register Bank inferred in Xilinx ISE

tool

V. Simulation Results
 The simulation is carried out on Xilinx
ISIM tool and results are shown in this section.
Figure 12 shows the result with initial conditions
i.e. Rst='0'. So that the processor comes into its
initial state with the initial values in all types of
the registers.

Fig 12: Simulation with initial Condition i.e.

Rst=’0’.

Figure 13 & 14 shows the simulation
result for loading of a number from memory to a
register. The instruction for this is
8F890064(100011111000100100000000011001
00b), where 100011b is the Opcode, 11100 is
source location, 01001b is Destination register
location and rest is the immediate address from
where data to be read. The instruction works as:
Rt = mem [rs(data)+64h] where rt= 1001b or
9(h/d),
Rs =11100b or 1ch or 28d in register bank and
having zero value. So the resultant address from
where data to be fetched would be 64h+0h= 64h.
The content of this 64h will be loaded into the 9
register in register bank.

Hex code: 8F890064, LW $s1, 100($s2) Load

word

Fig 13: Register bank updated Value

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

 ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-4, ISSUE-11, 2017

27

Fig 14: Load data from memory

Figure 15, shows the simulation for the

instruction to store some number from register to
memory location. “AF890060”, is the
mnemonics for this instruction. This will
perform the storing the number from the
specified location i.e. 1001 (9) to the address
hold by the rs and constant value. The yellow
marker shows this happening in the simulation
cycle.
mem [rs+60h]= rt where rt= 1001b or 9(h/d),
Rs =11100b or 1ch or 28d in register bank and
having zero value. Since Rt holds the value
30303030H, now this value is going to be written
in the memory location.
Hex Code: AF890060 SW $s1, 96($s2) Store
word

Fig 15: Storing of an immediate number

Fig 16: Addition of values from register bank

Figure 16 shows the simulation output of

the Addition operation of the values stored into
internal register bank. The opcode for this
instruction is 2538820. The register location(s)
are marked by blue color in the simulation
diagram.

Fig 17: Subtraction of values from register

Bank

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

 ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-4, ISSUE-11, 2017

28

Fig 18: Device Utilization Summary

The above figure shows the complete

summary of our implemented design, which
carries the information(s) about the number of
resources i.e. inferred gates/FFs/dedicated
LUTs, has been used by the implemented
designed. Through this information, we can also

put some extra efforts in the direction of
optimizing our design for the best possible result.

A. Overall processor Simulation Results

Figure(s) 19 and 20 are showing the
overall processor results. While initializing the
processor with rst =’1’. Our processor starts
fetching the instruction from ROM/ Instruction
memory which contains the Store, Load word
and Addition and Subtraction operation. Due to
large simulation signals we had divided our
simulation windows in two halves. The first half
i.e. figure 19 shows the signals like clk, rst,
Aluop, Alusw, AlusrcA, IRwrite etc. These
signals are basically coming from the control
Unit to bind the overall instruction execution.
For simplicity we had taken out Bus_r(31:0) for
the final output. Although we can verify these
data into the internal memory location(s) or
Register Memory Window.

Fig 19: Overall Processor Simulation result

(1)

Fig 20: Overall Processor Simulation result

(2)

The instr(31:26) signal shows the process of
opcode fetching from Instruction memory, it
starts from 8F, i.e.opcode for the loading of data
into the memory, the next is AF for storing the
data from memory, then 02 for Addition and so
on. On every clock pulse the new instruction will
be fetched and update automatically the
instr(31:26) signal. This signal in simulation
waveform is highlighted by the color RED.
The immed_addr(15:0) signal shows the
immediate value for the use of ALU operations.
This signal is highlighted by Yellow color in
simulation waveform. The intermediate Bus
(31:0) is showing the data output from the ALU
after completion of any instruction. This is
highlighted by the color white. At last the output
from A showing by ALU_OUT(31:0)
highlighted by the color Purple.

Conclusion:

The 32-bit fully functional asynchronous
processor has been designed using VHDL. A
fully asynchronous processor has been
implemented that is comprised of five stages.
The work can be potentially improved by
reducing I and R-type instructions. The
functional simulation shows that proposed
processor executes all the various instructions
efficiently. The proposed design being an open
core is more advantageous as compared to the
existing commercial microprocessor for better
understanding of internals of the asynchronous
microprocessor.

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

 ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-4, ISSUE-11, 2017

29

FUTURE SCOPE:

The design of this 32-bit asynchronous
microprocessor implemented using FPGA can be
further optimized to reduce its power and area by
using any of the following optimization
techniques Technology mapping & Logic
Optimization.

REFERENCES

[I] Afreen Tashfia., Minhaz. Uddin Md Ikram,
Aqib. AI Azad, and Iqbalur Rahman Rokon,"
Efficient FPGA Implementation of Double
Precision Floating Point Unit Using Verilog
HDL", International Conference on Innovations
in Electrical and Electronics Engineering
(ICIEE'20 12), October 2012, Dubai (UAE).
[2] Aneesh, R.; Jeju, K. "Design of FPGA based
8-bit RISC controller IP core using VHDL",
India Conference (INDICON), 2012 Annual
IEEE, On page(s): 427 – 432
[3] Anjana R & Krunal Gandhi, “VHDL
Implementation of a MIPS RISC Processor”,
August 2012, International Journal of Advanced
Research in Computer Science and Software
Engineering, pp 83-88
[4] Bhosle Preetam, Hari Krishna Moorthy,
"FPGA Implementation of Low Power Pipelined
32-bit RISC Processor", Proceedings of
International Journal of Innovative Technology
and Exploring Engineering (IJITEE), ISSN:
2278-3075, Vol-I, Issue-3, August 2012.
[5] Ferdous, T. "Design and FPGA-based
implementation of a high-performance 32-bit
DSP processor", Computer and Information
Technology (ICCIT), 2012 15th International
Conference, on page(s): 484 – 489
[6] Grover Naresh, Dr. M.K. Soni, “Reduction of
Power Consumption in FPGAs - An Overview”,
I.J. Information Engineering and Electronic
Business, 2012, 5, 50-69
[7] Grover Naresh, Dr. M.K. Soni, “Design of
FPGA based 32-bit Floating Point Arithmetic
Unit and verification of its VHDL code using
MATLAB”, I.J. Information Engineering and
Electronic Business, 2014, 1, 1-14
[8] Indu, Arun Kumar, “Design of Low Power
Pipelined RISC Processor”, International Journal
of Advanced Research in Electrical & electronics
& instrumentation Engineering, vol.2, no.3,
pp.3747-3756, August 2013.

[9] Kathuria Jagrit, M. Ayoubkhan, Arti Noor,
"A Review of Clock Gating Techniques", MIT
International Journal of Electronics and
Communication Engineering vol 1, no. 2, August
2011.
[10] Kumar B. Rajesh, Ravisaketh, and Santha
Kumar, 2014, "Implementation of A 16-bit RISC
Processor for Convolution Application",
Research India publications, pp 441-446.
[11] Li Li and Ken Choi “SeSCG: Selective
Sequential Clock Gating for Ultra - low-Power
Multimedia Mobile Processor Design,” IEEE
EIT Conference, May 2010.
[12] MD. Shabeena Begum, M.Kishore Kumar,
"FPGA based implementation of 32-bit RISC
processor", International Journal of Engineering
Research and Applications (IJERA), pp 1148-
1151
[13] Mohammad Imran, Ramananjaneyulu,
"FPGA Implementation of a 64-bit RISC
Processor Using VHDL", Proceedings of
International Journal of Reconfigurable and
Embedded Systems(IJRES), ISSN:2089-4864,
Vol-l, No.2, July 2012.
[14] Purna Addanki Ramesh,
Ch.Pradeep,"FPGA Based Implementation of
Double Precision Floating point
Adder/Subtractor Using Verilog", Proceedings
of International Journal of Emerging Technology
and Advanced EngineeringISSN-2250-2459,
Vol-2, issue 7, July 2012.
[15] Ramkumar B. and Harish M Kittur "low
power and Area- Efficient Carry Select Adder"
IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, vol. 20, no.2, 2012,
pp. 371-75.
[16] Ravindra J., T.Anuradha,"Design of Low
Power RISC Processor by Applying Clock
gating Technique", International Journal of
Engineering Research and Applications,
ISSN2248-9622, Vol-2, Issue-3, May-Jun- 2012
[17] Sakthikumaran Samiappa , S. Salivahanan,
V.S,kanchan. Bhaskaran, "16 bit RISC Processor
Design For Convolution Application " IEEE -
International. Conference on Recent Trends in
Information technology pp.394 - 397, June 2011.
[18] Sidheeq Aboobacker.V.M,"Four Stage
Pipelined 16-bit RISC on Xilinx Spartan 3AN
FPGA", Proceedings of International Journal of

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

 ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-4, ISSUE-11, 2017

30

Computer Applications, ISNN: 0975-888, Vol-
48, June 2012.
[19] Tina G Galani, Riya Saini and
R.D.Daruwala,"Design and Implementation of
32-bit RISC Processor using Xilinx",
international Journal of Emerging Trends in
Electrical and Electronics(IJETEE), ISNN:2320-
9569, Vol- 5, issue I, July-20 13.
[20] Trivedi Priyanka, Rajan Prasad Tripathi
"low Power pipelined RISC processor: A
Review," IJSRD vol.2, no.4, pp. 526-528, July
2014.
 [21]Uma R., " Design and Performance analysis
of 8 bit RISC Processor Using Xilinx Tool",
International Journal of Engineering Research
and Application, vol.2, no.2, pp. 53-58, April
2012.
[22]Ritpurkar Sagar P., Prof. Mangesh N.
Thakare, Prof. Girish D. Korde," Review on 32-
bit MIPS RISC Processor using VHDL", IOSR

Journal of Electrical and Electronics Engineering
(IOSR-JEEE), PP 46-50
[23] Xiao Li, Longwei Ji, Bo Shen, Wenhong Li,
Qianling Zhang, "VLSI implementation of a
High-performance 32-bit RISC
Microprocessor", Communications, Circuits and
Systems and West Sino Expositions, IEEE 2002
International Conference on, Volume 2,
2002,pp.1458 – 1461.
[24]Wikipedia
https://en.wikipedia.org/wiki/Asynchronous_cir
cuit
http://www.alteraforum.com/forum/forum.php

[25]MIPS Instruction set architecture
https://classes.soe.ucsc.edu/cmpe110/Spring11/l
ectures/04_MIPS_ISA%20.pdf

[26]MIPS Architecture

https://en.wikipedia.org/wiki/MIPS_architecture

