
 

 
  ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-4, ISSUE-12, 2017 

1 

 
 
 
 
 

NUMERICAL METHODS FOR ENGINEERING PROBLEMS:  
A BRIEF REVIEW 

Dr Pratibha Pant 
Dept. of Mathematics, GNDEC, Bidar 

 
Abstract 
Compliant members inflexible link 
mechanisms undergo large deflections when 
subjected to external loads. Because of this 
fact, traditional methods of deflection analysis 
do not apply. Since the nonlinearities 
introduced by these large deflections make the 
system comprising such members difficult to 
solve, parametric deflection approximations 
are deemed helpful in the analysis and 
synthesis of compliant mechanisms. This is 
accomplished by representing the compliant 
mechanism as a pseudo-rigid-body model. A 
wealth of analysis and synthesis techniques 
available for rigid-body mechanisms thus 
become amenable to the design of compliant 
mechanisms. In this paper, a pseudo-rigid-
body model is developed and solved for the tip 
deflection of flexible beams for combined end 
loads. A numerical integration technique 
using quadrature formulae has been 
employed to solve the large deflection 
Bernoulli-Euler beam equation for the tip 
deflection. Implementation of this scheme is 
simpler than the elliptic integral formulation 
and provides very accurate results. 
Key words: Differential equations, boundary 
conditions, numerical tool  

Introduction: 
A pseudo-rigid-body model for a flexible beam 
can be developed based on the deflection curve 
of the beam tip subjected to given loads. 
Deflection curves for flexible beams can be 
obtained by solving the exact form of the 
Bernoulli-Euler beam equation which states that 
the bending moment at any point on the beam is 
proportional to its curvature. 
Numerous techniques are available that take into 
account the nonlinearities introduced in the beam 

equation due to large deflections. A classical 
solution involves the solution of a second order 
nonlinear differential equation using elliptic 
integrals of the first and the second kinds 
(Bisshopp and Drucker, 1945; Frisch-Fay, 1963; 
Mattiasson, 1981; Howell and Midha, 1995). 
Though the technique yields a closed form 
solution which is exact, the involved derivations 
are cumbersome and time consuming. Moreover, 
the use of this technique is limited to relatively 
simple geometries and loading. Numerical 
analysis methods, such as finite element analysis 
on the other hand, are capable of solving more 
general problems although they provide 
approximate solutions. 

Many other applications of compliant 
mechanisms may involve flexible beams 
subjected to both end forces and end moments, 
or combined loads in general. Developing a more 
general formulation for flexible beams with 
combined loads is the purpose of this work. A 
numerical integration technique is employed to 
solve deflection equations. The technique proves 
to be simpler in implementation than the elliptic 
integral formulation and provides nearly 
accurate results. 

Deflection Equations for Flexible members 
with Combined End Loads 
Using the Euler-Bemoulli equation for vertical 
force, and  

The Euler–Bernoulli equation describes the 
relationship between the beam's deflection and 
the applied load:[5] 

 
One-dimensional Golden Section Method (Rao, 
1984) has been employed as an optimization 
scheme to determine an optimal value of y that 
maximizes the pseudo-rigid-body angle, ©, for 
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individual deflection curves (i.e., for each 
combination of n and /c). In each case, the 
maximum value of the error in approximation is 
less than 0.5 percent. Figure 4 shows the 
variation of y with K for different values of n. 
Initially, for each n, there is a sharp decrease in 7 
as K increases. This means that the pivot is 
displaced towards the tip in its undeflected 
position and that there is a decrease in the 
characteristic radius of the curve. For larger 
values of K:, y converges to a constant value of 
about 0.74. It is also observed that for a constant 
/c, variation of y with respect to n is not as 
significant when compared with that of K for 
constant n. This means that the variation of the 
characteristic radius factor is predominantly 
dependent on load ratio, K Because the beam tip 
initially follows a circular path for combined 
loads and that both the location of the pivot and 
the characteristic radius change with the load 
ratio, parameter K can be used to develop a 
physical model shown in Fig. 5 to approximate 
beam tip deflection. The model comprises three 
links, namely, a fixed link, a collar that slides 
along the fixed link and an axially compressible 
link that rotates about the pivot on the collar. The 
movement of the collar accounts for the 
displacement of the pivot. Since this movement 
is dependent on K, a pseudo force of magnitude 
K is introduced on the collar. A spring of 
undeflected length (1 - y^)/ (7„ is the value of the 
characteristic radius factor for «: = 0) and 
stiffness coefficient, Ki, is introduced to restrain 
the displacement of the pivot when subjected to 
a pseudo force, K. Another pseudo force of 
magnitude K is introduced at the tip of the axially 
compressible link to account for the decrease in 
the characteristic radius. Since this decrease is 
equal to the displacement of the pivot, the 
rotating link will have the same stiffness 
characteristics as the spring attached to the 
collar. Here, the uncompressed length of the 
rotating link is equal XayJ,. K torsional spring of 
stiffness, Kg is placed at the pivot to represent 
resistance of the rotating link against combined 
loads. pseudo-rigid-body representation in a 
complex plane is shown in Fig. lO(fo). The 
prescribed path or the Precision points, P|, P2, P-
i and P4 and the corresponding actuation loads, 
Fx F2, F3 and F4 are known a priori. Here, the 
force applied is a follower load for which the 
point of application is fixed with respect to the 
beam tip. The unknowns in the problem are the 
positions, orientations and dimensions of the 

compliant and the rigid links. In Fig. lO(fo), Zo 
and a describe the initial position and orientation 
of the flexible segment with respect to the origin, 
O. Zi'is the position vector corresponding to the 
location of the collar or the pivot joint which can 
be determined using Eqs. (23) and (30). The 
magnitude, \Z, - Z„\ + IZ2 - Z,| is the length, L of 
the flexible beam where Z2 is the position vector 
representing the beam tip. The angle, 0 is the 
pseudo-rigid-body angle which can be computed 
using Eq. (26). Z3, Z4 and Z5 are the position 
vectors representing the rigid links as shown. 
The angles, 4' and (j) are the rigid body rotations 
for the coupler, Z2Z3Z5 and the output link, 
Z4Z5. The example is solved in two steps. The 
first step involves the synthesis of the dyad 
comprising the flexible link and the coupler. 
Loop closure equations for this dyad can be 
written as Deflections at specific points on a 
beam must be determined in order to analyze a 
statically indeterminate system , The curve that 
is formed by the plotting the position of the 
centroid of the beam along the longitudal axis is 
known as the elastic curve, Supports which resist 
a force, such as a pin, restrict displacement l 
Supports which resist a moment, such as a fixed 
end support, resist displacement and rotation or 
slope, We can derive an expression for the 
curvature of the elastic curve at any point where 
ρ is the radius of curvature of the elastic curve, 
Since we have a function for M along the beam 
we can use the expression relating the moment 
and the deflection, shear, bending moment, 
slope, and deflection curves identifying the 
maximum, minimum, and zero points for each 
curve . 

Conclusions: 
A pseudo-rigid body model is been developed to 
determine large beam tip deflections of flexible 
beams subjected to combined end loads. End 
vertical force, end horizontal force and a positive 
end moment are considered. Gauss-Chebyshev 
quadrature formulae is used as a numerical 
integration technique to solve deflection 
equations. Implementation of this scheme is 
much simpler compared to the elliptic integral 
formulation and provides solutions that are 
accurate. For load cases comprising end forces 
(end vertical and end horizontal forces), the 
characteristic radius (or the pin joint location) is 
been determined to be 0.81/ as compared to that 
of 0.85/ with the elliptic integral formulation. 
Here, / is the beam length. The error incurred is 
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4.7 percent. For combined end , loads, the value 
of characteristic radius is found to lie in the range 
of 0.73/ and 0.85/ . As the magnitude of the end 
moment increases, the value of characteristic 
radius converges to 0.74/. This is consistent with 
the results found by Howell . For load cases 
comprising end forces, the stiffness of the 
torsional spring, K^ was found to be 2.52 
compared to 2.65 obtained using the elliptic 
integral formulation. This is an error of 4.9 
percent. With an increase in the magnitude of the 
end moment, the value of the stiffness decreases 
and converges to a value of 1.52. The results 
match well with cases investigated by Howell  
for combined end loads using the elliptic integral 
formulation. An example is finally presented to 
illustrate the synthesis of compliant mechanisms 
using this model 
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