

 ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-4, ISSUE-4, 2017

23

FSM BASED INFERENCE OF MISSING PACKET IN WLAN
Kapil Mestry1, Rupesh Shirodkar2

BE computer ,SSPM’s college of Engineering (SSPMCOE), Kankavli, India

Abstract
Wireless network becoming a crucial part of
ICT based organization. The network
communication traces are useful in user
behavior analysis, security, resource
utilization, network management. These
traces are basis for the decision making
systems, big data analysis. More accuracy
will be achieve with more complete datasets.
We are proposing FSM based inferring
system for missing packets in infrastructure
based WLAN.
Keywords:missingpackets;WLAN;Packet_Tr
ace; styling; insert (key words)

I. INTRODUCTION

Nowadays wireless network becoming
important part in our life such as
smartphones,tabs were used by people for
communication, sharing information on social
networking sites also people use the network for
commercial purpose like online shopping.This
gives raise to develop more robust and secure
ccommunication protocol.Also these wireless
communication can be traced and used for user
bahaviour analysis,for Monitoring the network
activity,for network management.There are
different tools are available such as
wireshark,tshark,ns tool used in the
communication protocol analysis and research.
The packet traces were captured across different
access points by using monitors.This traces will
be used for various purposes.The accuracy of the
traces neccessary for detailed MAC level
behaviour of operational wireless
network.[3]The incomplete views from multiple
monitors will be merged for detail
analysis.There are some packets which are not
captured by any monitor which affects the
performance of applications using the traces. We

are implementing a framework for reconstruct
the packets that are missing from the trace.
There are different approaches to deal with this
problem.AP logs provide information on
transmission and reception of AP, but not those
of client.One or more host in the BSS record the
attributes of all trasmission that they
observe.Which will be collected to form the
complete trace of communication with some
missing packets due to packet drop cause by
collision or weak signal.It is not easy to find
how much information is missing. Our goal is to
estimate the missing packet from merged trace
collected across different
Monitors.The second goal is to develop
inference procedure based on formal lenguage
model to determine wheather each packet was
recieved by its destination and add the packets
that are missing from merged trace.

II. RATIONALE AND SIGNIFICANCE OF THE

STUDY

The inference engine uses the information in the
packet that the monitor captures to infer the
packets that are not capture. We use regular
language as our choice of formal language since
They are recognizable by finite state automata
which have better implementation. FA also
provides efficient way to enhance traditional
language recognition in a way that allows
sentence reconstruction from partial
information. To infer missing information we
scan the trace and process each packet.

III. PROBLEM DEFINATION

After going through the literature and discussion
we have formulated the problem statement,
scope and objectives of our project as follows:

 INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

 ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-4, ISSUE-4, 2017

24

A. Problem Statement

Traces collected by different monitors or sensors
for different purpose such as:

 Research
 User moment tracking

It is required that the traces should contain all
the packets for every conversation to be infer.
Tools such as wireshark will be used for
capturing the packets will skip some of the
packets.
Our aim is to infer the complete trace.

B. Scope

 The packet traces consist of only
infrastructure based communication.

 The system works in offline mode.
 Human intelligence may be required for

some critical communication path.
 The packet trace should contain enough no of

packets between two nodes to predict
missing packets.

IV. PROPOSED SYSTEM

A. System Architecture
We define a system named IMPUF(Infer
Missing Packet using FSM).It is a non-intrusive
tool that builds on passive monitoring to support
detailed MAC-level analysis of operational
802.11 wireless networks. It uses an engine
based on formal language techniques to infer
packets that were missed by all monitors as well
as infer which packets were received by their
destinations. We use traces to evaluate our
techniques.

To resolve the problem defined in the problem
definition we define the architecture of our
system. Which takes input as a trace file that is
captured by monitors consist of packets that are
Communication between two end that is single
source and destination. In such a trace file some
packets are missing which are transferred during
communication between two ends. Our task is to
find out such packets or generates such packets
based on formal language technique for that we
use FSM (Finite State Automata).

B. Working of System:

 Preprocessing Phase:

Input: the trace file captured by the monitors.
Output: A database table having details of the
packet plus
additional marker packets. The rows will be
sorted based on time and clubbed together
representing continuous conversation between
single source and destination.
 Read Packets:

Input: It reads the packet in the conversation
corresponding to selected pair of source and
destination.
Output:
 Classify Packets:

Input: Packet trace captured by monitor.
Output: Classify the packets according to the
type of packets present in packet trace
 Select appropriate FSM:

Input: Classified packet trace. We map packets
to symbols of the language of FSM.
Additionally, we identify the conversation of the
packet based on its source and destination. Non-
unicast packets are considered conversations of
a single packet.
Output: Appropriate FSM use for finding
missing packets in the trace.
 Generate Missing Packet:

Input: Identified missing packet by FSM.
Output: Generate or build the missing packet in
the trace.
 Update the missing packet:

Update the trace with generated missing packet
in the trace.

V. METHODOLOGIES AND TECHNIQUES
A. Formal Language Approach
We cast the inference problem as a language
recognition task. Sentences in the language
represent legal sequences of packets ex- changed
by two endpoints that follow the protocol. We
call these packet exchanges conversations and
define them at the granularity of logical 802.11
operations (e.g., all packets involved in an
association attempt, or an exchange involving

 INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

 ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-4, ISSUE-4, 2017

25

RTS, CTS, DATA, and ACKs to successfully
convey a single data packet). Although longer
conversations can be defined (e.g., association
must precede data transmission) to enable a
slightly larger set of inferences, the practical
benefit of doing so is tiny; the additional
inferences are about relatively rare events. We
view the input trace as interleaved partial
sentences from the language. The interleaving
stems from overlapping conversations between
distinct endpoint pairs. A similar view of packet
traces is taken in the context of passive testing
of protocol implementations. Our goal is
different, however: to find valid sentences in the
language that account for what is observed in the
input trace. Thus, we do not simply ask “Is this
sentence in the language?” Rather, we presume
that there was a sentence in the language for
which we see only some of the symbols and ask
what complete sentence it was likely to have
been. We use regular languages as our choice of
the formal language because they are
recognizable by finite state machines (FSMs)
which have efficient implementations. FSMs
also afford an efficient way to extend traditional
language recognition in a way that allows
sentence reconstruction from partial
information, as described below. Our short
conversations can be easily described using
FSMs.

B. Processing the Trace

Assume that the FSM (and so the language) for
our protocol has been defined. To infer missing
information using it, we scan the trace and
process each packet as follows:

1) Classify:
We map packets to symbols of the language
based primarily on their type. We also use the
values of the retry bit and the fragment number
field in forming symbols, which provides some
additional leverage in making inferences, at the
cost of a somewhat larger symbol set and FSM.
Additionally, we identify the conversation of the
packet based on its source and destination. For
packets without the source field (ACKs and
CTSs), we deduce the source from earlier
packets. Non-unicast packets are considered
conversations of a single packet.

2) Generate Marker:
Our language contains an artificial symbol,
which we call the marker. We introduce a
marker if the currently scanned packet indicates

that an ongoing conversation has ended. This
occurs under one of the following conditions.
First, the sequence number field signals a new
conversation between the endpoints. Second, for
non-AP nodes, the other endpoint of the current
packet is different from the earlier one; only APs
can have multiple simultaneous conversations.
Third, there is no legal transition in the FSM for
the current symbol; if nodes correctly implement
the 802.11 protocol, our FSM construction
(described below) ensures that there is always a
transition for packets in the current
conversation. Fourth, a timeout interval has
passed since the last seen activity for the
conversation.

3) Take FSM Step:
If a marker was generated, first take a step in the
FSM based on the marker. By construction, this
causes a transition to the accept state, closing the
current conversation and placing the FSM in the
start state. The path taken from the start to the
accept state reveals information missing from
the trace, as explained shortly. Now take a step
in the FSM based on the symbol for the current
packet.

 An FSM for our simplified example. A ‘+’
indicates that the packet was received by its
destination, and a ‘−’ indicates that the
packet was lost.
While the first two steps involve some 802.11-
specific decisions, the third step is entirely
independent of the protocol being analyzed. Key
to this process is the construction of the FSM,
which re- quires elaboration. We cannot simply
use an FSM corresponding to the protocol
because packets (i.e., sentence symbols) are
missing from the trace and because we want to
use the FSM to estimate which packets were
received by their destination. We extend
traditional FSM matching to address these
issues. We explain our method in the context of
a simplified version of 802.11 data exchange
conversations in which there are no fragments,

 INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

 ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-4, ISSUE-4, 2017

26

and instead of quitting after a configured
number of at- tempts, nodes retransmit the data
packet until they receive an ACK. An FSM for
this simplified version is shown in above figure.

1) Inferring Missing Packets:
We now explain how we infer packets that are
missing from the trace. With missing packets,
there may be no legal transition for the current
symbol.

The same FSM after augmentation of the
Start state (only).The dashed edges are the
augmented ones and the symbols in braces
are their annotations.

For instance, in our simplified example, if the
first packet encountered for a conversation is a
DATA retry, there is no legal transition out of
the start state. Our solution is to augment the
FSM with additional edges. Abstractly, for each
pair of states (Si,Sj) 6 = (Start, Accept), we add
an edge from Si to Sj for each distinct trail(or, a
path with no repeated edges) from Si to Sj ,
labeling it with the final symbol of the trail. We
annotate each augmented edge with the
traversed trail’s prefix, i.e. the path without the
final symbol. The annotation represents packets
that must be missing if the edge is traversed to
reach the accept state. Example augmented edge
scan be seen on Figure 4. For instance, the edge
between Start and S4 can be taken upon
observing a DATA retry and its annotation
indicates a missing DATA packet (which was
lost). We move non-deterministically in the
augmented FSM until the accept state is reached.
At this point, there may be multiple paths from
Start to Accept, all of them consistent with the
captured packets. To select, we assign weights
to paths and select the lowest weight one. The
weight of a path reflects the number of packets
that it indicates as missing and the rarity of those
packets types. Specifically, it is the sum of the
weights of its edges. Unaugmented edges, which

correspond to captured packets, have zero
weight. The weight of an augmented edge is the
sum of the weights of the symbols in the
annotation. Symbol weights are inversely
proportional to their frequencies in the trace.
(We find that our inferences are similar even
when we use the logs of these values, which
translates the decision to the minimum product
of the inverse frequencies, rather than their
sum.) This weighting method prefers the shorter
of two paths when the symbols of one are a
subset of the other, thus producing conservative
estimates of missing packets. When the path
weight function is a linear operator, as in our
case, a straightforward optimization simplifies
FSM construction, without impacting results. If
there are multiple trails from Si to Sj ending
with the same symbol, only the lowest weight
one needs to be considered. The Figure 4 shows
the FSM for our example after the Start state
(only) has been augmented using this
optimization. As a final step when the accept
state is reached, we synthesize any missing
packets along the selected path. We cannot
always infer the exact properties of a missing
packet but can often do so. Properties that are
relevant for MAC-level analysis include packet
size and transmission time and rate, and which
of these we can infer depends on the details of
the 802.11 protocol. The size of certain packet
types, such as ACK, RTS and CTS, is fixed. For
others, such as DATA packets, the size can be
inferred if a retransmission of the packet is
observed. The transmission time of a missing
packet can be inferred if there exists a captured
packet relative to which it has a fixed spacing;
for instance, the transmission time of a DATA
packet can be inferred from that of the
corresponding ACK. The trans- mission rate of
certain packet types, such as PROBE
REQUEST, is usually fixed for a client, and for
certain other types, such as ACK, it depends on
the rate of the previous, incoming packet (i.e.,
DATA). However, the rate of missing DATA
packets cannot be inferred unless the rate
adaptation behavior of the sender is known.[2]

VI. IMPLEMENTATION DETAILS

We have basically two modules implementing
the proposed system. First preprocessing in
which we upload the trace to database and
generate the marker. Second FSM module
which reads the packets from database and steps
though the FSM to generate the missing

 INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

 ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-4, ISSUE-4, 2017

27

packets. For FSM we have created tt_table for
storing the state transition diagram and ot_table
for storing the output symbols for transition
from one state to another state in FSM. We have
tried for association phase for which we have 8
states with 9 input symbols.

A. Attributes of wireless trace

Traces vary in the information they include.
Some traces have timestamps precise to
nanoseconds, others only to milliseconds; not
all traces record 802.11 acknowledgments; to
maintain users' anonymity, few researchers
release full payloads, and so on [13, 15]. The
following data are available in all 802.11
CRAWDAD traces[5]; we assume them as the
core data that are likely to be available in future
wireless traces:
1. All types of data packets.
2. All types of management packets including
beacons, probe requests, and probe responses.
3. Full 802.11 header in all captured packets,
including source and destination addresses
(possibly anonymized), Sequence number,
retransmission bit, type, and subtype. Beacon
packets[1] also have timestamps applied By the
AP.
4. Monitor's timestamp (set by the kernel or
possibly the device).

VII. PERFORMANCE EVALUATION
A. Completeness of the trace
We estimate the completeness of the trace while
using Ct which is defined as number of packets
with sequence number changed per node. [4]

Ct=∑sequence_no_Change of node i

B. Number of missing packets generated

Mt=no_of_output symbols inserted in the trace
during FSM transition.

Performance can be evaluated by using formula
Efficiency=Mt/Ct;

REFERENCES

[1] Pablo Brenner, “BREEZECOM wireless
communication” ,Technical tutorial on the
IEEE 802.11 Standard"

[2] R. Mahajan, M. Rodrig, D.Wetherall and J.
Zahorjan, “Analyzing MAC level behavior
of wireless networks in the wild.", in
SIGCOMM’06

[3] J.Yang, YChen, W.Trappe,J.Cheng,
"Detection and localization of multiple
spoofing attackers in wireless networks.",
IEEE Transactions on parallel and
Distributed Systems, Vol. 24,No.1,Jan. 2013

[4] Aaron Schulman” On the Fidelity of 802.11
Packet Traces” Master's Scholarly Paper by
Neil Spring Department of Computer
Science, University of Maryland, College
Park

[5] CRAWDAD data set Downloaded from
http://crawdad.cs.dartmouth.edu.

