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Abstract— Protocols are commonly used 
today to connect IP blocks on structured 
SoCs. Generally Protocol is the back-bone of 
the SoC and its failure usually leads to a 
non-functional chip. In present market, 
various types of standard protocols are 
available and are used in SoC which requires 
a bridge to pass the information from one 
type of protocol to other type of protocol 
safely and without any data loss.  Advanced 
eXtensible Interface (AXI ) and ON chip 
protocol is widely used as the de facto 
standard SoC bus. In this work, the bus 
bridge was designed to interface these 
protocols which plays a vital role in SoC 
application such as it may lead to application 
failure, if it doesn’t work properly. Initially 
basic AXI 4.0 and OCP protocols are 
modelled separately using VERILOG and 
are simulated. Basically Bus Bridge should 
convert command and data of AXI  formats 
to acceptable OCP formats. This conversion 
does not ensure proper communication 
unless the timings of each protocol were met. 
Hence the interconnecting Bus Bridge 
wrapper between Advanced eXtensible 
Interface (AXI ) and on chip was designed 
with proper timing delay. 
Keywords—SOC,AXI,OCP 
                               I  INTRODUCTION 
  There are many companies that develop core 
IP for SoC products. The interfaces to these 
cores can differ from company to company and 
can sometimes be proprietary in nature. The 
SoC developer then must expend time, effort, 
and money to create “bridge” or “glue” logic 
that allows all of the cores inside the SoC to 

communicate properly with each other. 
Incompatible interfaces are thus barriers to both 
IP developers and SoC developers. SoC 
integrated circuits envisioned by this 
subcommittee span a wide breadth of 
applications, target system costs, and levels of 
performance and integration.  
     Integrated circuits have entered the era of 
System-on-a-Chip (SoC), which refers to 
integrating all components of a computer or 
other electronic system into a single chip. It 
may contain digital, analog, mixed-signal, and 
often radio-frequency functions – all on a single 
chip substrate. With the increasing design size, 
IP is an inevitable choice for SoC design. And 
the widespread use of all kinds of IPs has 
changed the nature of the design flow, making 
On-Chip Buses (OCB) essential to the design.  
     Of all OCBs existing in the market, the 
AMBA bus system is widely used as the de 
facto standard SoC bus. On March 8, 2010, 
ARM announced availability of the AMBA 4.0 
specifications. As the de facto standard SoC 
bus, AMBA bus is widely used in the high-
performance SoC designs. The AMBA 
specification defines an on-chip communication 
standard for designing high-performance 
embedded microcontrollers. 
 
     ARM introduced the Advanced 
Microcontroller Bus Architecture (AMBA) 4.0 
specifications in March 2010, which includes 
Advanced extensible Interface (AXI) 4.0 and 
Open Core Protocol Specification 2.2 which is 
configurable protocol interface. AMBA bus 
protocol has become the de facto standard SoC 
bus. That means more and more existing IPs 
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must be able to communicate with AMBA 4.0 
bus. Based on AMBA 4.0 bus and OCP bus, 
This design is an Intellectual Property (IP) core 
of AXI(Advanced extensible Interface) Lite to 
OCP(Open Core Protocol)  Bridge, which 
translates the AXI4.0-lite transactions into OCP 
transactions. The bridge provides interfaces 
between the high-performance AXI bus and 
high-performance OCP domain. 
     The Advanced Microcontroller Bus 
Architecture (AMBA) is used as the on-chip 
bus in system-on-a-chip (SoC) designs. Since 
its inception, the scope of AMBA has gone far 
beyond microcontroller devices, and is now 
widely used on a range of ASIC and SoC parts 
including applications processors used in 
modern portable mobile devices like smart 
phones. 
    The AMBA protocol is an open standard, on-
chip interconnect specification for the 
connection and management of functional 
blocks in a System-on-Chip (SoC). It facilitates 
right-first-time development of multi-processor 
designs with large numbers of controllers and 
peripherals. 
     SOC is a device which integrates all the 
computer devices on to one chip, which runs 
with desktop operating systems like windows, 
Linux etc. 
     The contrast with a microcontroller is one of 
degree. Microcontrollers typically have under 
100 KB of RAM (often just a few kilobytes) 
and often really are single-chip-systems, 
whereas the term SoC is typically used with 
more powerful processors, capable of running 
software such as the desktop versions 
of Windows and Linux, which need external 
memory chips (flash, RAM) to be useful, and 
which are used with various external 
peripherals. In short, for larger systems system 
on a chip is hyperbole, indicating technical 
direction more than reality: increasing chip 
integration to reduce manufacturing costs and 
to enable smaller systems. Many interesting 
systems are too complex to fit on just one chip 
built with a process optimized for just one of 
the system's tasks.     
     When it is not feasible to construct an SoC 
for a particular application, an alternative is 
a system in package (SiP) comprising a number 
of chips in a single package. In large volumes, 
SoC is believed to be more cost-effective than 
SiP since it increases the yield of the 

fabrication and because its packaging is 
simpler. 
 
 
              II. AXI(Advanced eXtensible 
Interface) 
     AXI is the high-performance bus in the 
AMBA family. The architecture defines three 
write channels and two read channels. The 
write channels are address, write data, and 
response. The read channels are address and 
read data. The address channels include 32-bit 
address buses, AWADDR and ARADDR, but 
this could be extended in some 
implementations. The write and read data buses 
(WDATA and RDATA) may be defined under 
the specification as any 2n number, from 8-bit 
to 1024-bit. With the assumption that both the 
address and data buses are 32-bit, and that the 
data buses are 128-bit, the write address, write 
data, and write response channels would require 
56, 139, and 8 I/O, respectively. The read 
address and read data channels would require 
56 and 137 I/O, respectively. Thus, each 128-
bit AXI master has 396 I/O total.    AXI 
masters and slaves are connected together 
through a central interconnect, which routes 
master requests and write data to the proper 
slave, and returning read data to the requesting 
master. The interconnect also maintains 
ordering based on tags if, for example, a single 
master pipelines read requests to different 
slaves.  
     AXI uses a handshake between VALID and 
READY signals. VALID is driven by the 
source, and READY is driven by the 
destination. Transfer of information, either 
address and control or data, occurs when both 
VALID and READY are sampled high. AXI, 
the third generation of AMBA interface defined 
in the AMBA 3 specification, is targeted at high 
performance, high clock frequency system 
designs and includes features which make it 
very suitable for high speed sub-micrometer 
interconnect. 
1.)separate address/control and data phases 
2.)support for unaligned data transfers using 
byte strobes 
3.)burst based transactions with only start 
address issued 
4.)issuing of multiple outstanding addresses 
5.)Easy addition of register stages to provide 
timing closure 

http://en.wikipedia.org/wiki/System-on-a-chip
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http://en.wikipedia.org/wiki/Microcontroller
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Table1 interface parameters for AXI-4 and 
AXI-4 LITE  
       Architecture: The AXI protocol is burst-
based. Every transaction has address and 
control information on the address channel that 
describes the nature of the data to be 
transferred. The data is transferred between 
master and slave using a write data channel to 
the slave or a read data channel to the master. 
In write transactions, in which all the data flows 
from the master to the slave, the AXI protocol 
has an additional write response channel to 
allow the slave to signal to the master the 
completion of the write transaction. The AXI 
protocol enables: • address information to be 
issued ahead of the actual data transfer  
• support for multiple outstanding transactions 
 • support for out-of-order completion of 
transactions. 

 
 
Fig1. channel architecture of reads 

 
Fig2 channel architecture of writes 
Channel definition:- Each of the five 
independent channels consists of a set of 
information signals and uses a two-way VALID 
and READY handshake mechanism. The 

information source uses the VALID signal to 
show when valid data or control information is 
available on the channel. The destination uses 
the READY signal to show when it can accept 
the data. Both the read data channel and the 
write data channel also include a LAST signal 
to indicate when the transfer of the final data 
item within a transaction takes place. 
Read and write address channels: 
Read and write transactions each have their 
own address channel. The appropriate address 
channel carries all of the required address and 
control information for a transaction. The AXI 
protocol supports the following mechanisms: 
 • variable-length bursts, from 1 to 16 data 
transfers per burst 
 • bursts with a transfer size of 8-1024 bits  
• wrapping, incrementing, and non-
incrementing bursts 
 • atomic operations, using exclusive or locked 
accesses  
• system-level caching and buffering control. 
Read data channel: The read data channel 
conveys both the read data and any read 
response information from the slave back to the 
master. The read data channel includes:  
• the data bus, which can be 8, 16, 32, 64, 128, 
256, 512, or 1024 bits wide  
• a read response indicating the completion 
status of the read transaction. 
Write data channel: The write data channel 
conveys the write data from the master to the 
slave and includes: 
 • the data bus, which can be 8, 16, 32, 64, 128, 
256, 512, or 1024 bits wide 
 • one byte lane strobe for every eight data bits, 
indicating which bytes of the data bus are valid. 
Write data channel information is always 
treated as buffered, so that the master can 
perform write transactions without slave 
acknowledgement of previous write 
transactions. 
Write response channel: The write response 
channel provides a way for the slave to respond 
to write transactions. All write transactions use 
completion signaling. The completion signal 
occurs once for each burst, not for each 
individual data transfer within the burst. 
Interface and inter connects: 
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Fig3.interface interconnect. 
The AXI protocol provides a single interface 
definition for describing interfaces:  
• between a master and the interconnect 
 • between a slave and the interconnect  
• between a master and a slave. The interface 
definition enables a variety of different 
interconnect implementations. The interconnect 
between devices is equivalent to another device 
with symmetrical master and slave ports to 
which real master and slave devices can be 
connected. Most systems use one of three 
interconnect approaches: 
 • shared address and data buses 
 • shared address buses and multiple data buses  
• multilayer, with multiple address and data 
buses. In most systems, the address channel 
bandwidth requirement is significantly less than 
the data channel bandwidth requirement. Such 
systems can achieve a good balance between 
system performance and interconnect 
complexity by using a shared address bus with 
multiple data buses to enable parallel data 
transfers. 
 
                III OPEN CORE PROTOCOL 
Point-to-Point Synchronous Interface: 
To simplify timing analysis, physical design, 
and general comprehension, the OCP is 
composed of uni-directional signals driven with 
respect to, and sampled by the rising edge of 
the OCP clock. The OCP is fully synchronous 
(with the exception of reset) and contains no 
multi-cycle timing paths with respect to the 
OCP clock. All signals other than the clock 
signal are strictly point-to-point.  
Bus Independence: 
A core utilizing the OCP can be interfaced to 
any bus. A test of any busindependent interface 
is to connect a master to a slave without an 
intervening on-chip bus. This test not only 
drives the specification towards a fully 
symmetric interface but helps to clarify other 
issues. For instance, device selection techniques 
vary greatly among on-chip buses. Some use 
address decoders. Others generate independent 
device select signals (analogous to a board level 
chip select). This complexity should be hidden 

from IP cores, especially since in the directly-
connected case there is no decode/selection 
logic. OCP-compliant slaves receive device 
selection information integrated into the basic 
command field. 
 
Arbitration schemes vary widely. Since there is 
virtually no arbitration in the directly-connected 
case, arbitration for any shared resource is the 
sole responsibility of the logic on the bus side 
of the OCP. This permits OCPcompliant 
masters to pass a command field across the 
OCP that the bus interface logic converts into 
an arbitration request sequence. 
Commands: 
There are two basic commands, Read and Write 
and five command extensions. The 
WriteNonPost and Broadcast commands have 
semantics that are similar to the Write 
command. A WriteNonPost explicitly instructs 
the slave not to post a write. For the Broadcast 
command, the master indicates that it is 
attempting to write to several or all remote 
target devices that are connected on the other 
side of the slave. As such, Broadcast is 
typically useful only for slaves that are in turn a 
master on another communication medium ( 
such as an attached bus ). 
 
The other command extensions, Read 
Exclusive, Read Linked and Write Conditional, 
are used for synchronization between system 
initiators. Read Exclusive is paired with Write 
or Write Non Post, and has blocking semantics. 
Read Linked, used in conjunction with Write 
Conditional has non-blocking (lazy) semantics. 
These synchronization primitives correspond to 
those available natively in the instruction sets 
of different processors. 
Address/Data 
Wide widths, characteristic of shared on-chip 
address and data buses, make tuning the OCP 
address and data widths essential for area-
efficient implementation. Only those address 
bits that are significant to the IP core should 
cross the OCP to the slave. The OCP address 
space is flat and composed of 8-bit bytes 
(octets).  
 
To increase transfer efficiencies, many IP cores 
have data field widths significantly greater than 
an octet. The OCP supports a configurable data 
width to allow multiple bytes to be transferred 
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simultaneously. The OCP refers to the chosen 
data field width as the word size of the OCP. 
The term word is used in the traditional 
computer system context; that is, a word is the 
natural transfer unit of the block. OCP supports 
word sizes of power-of-two and nonpower-of-
two as would be needed for a 12-bit DSP core. 
The OCP address is a byte address that is word 
aligned. 
 
Transfers of less than a full word of data are 
supported by providing byte enable information 
that specifies which octets are to be transferred. 
Byte enables are linked to specific data bits 
(byte lanes). Byte lanes are not associated with 
particular byte addresses. This makes the OCP 
endianneutral, able to support both big and 
little-endian cores. 
Pipelining: 
The OCP allows pipelining of transfers. To 
support this feature, the return of read data and 
the provision of write data may be delayed after 
the presentation of the associated request. 
Response: 
The OCP separates requests from responses. A 
slave can accept a command request from a 
master on one cycle and respond in a later 
cycle. The division of request from response 
permits pipelining. The OCP provides the 
option of having responses for Write 
commands, or completing them immediately 
without an explicit response. 
Burst: 
To provide high transfer efficiency, burst 
support is essential for many IP cores. The 
extended OCP supports annotation of transfers 
with burst information. Bursts can either 
include addressing information for each 
successive command (which simplifies the 
requirements for address sequencing/burst 
count processing in the slave), or include 
addressing information only once for the entire 
burst. 
In-band Information: 
Cores can pass core-specific information in-
band in company with the other information 
being exchanged. In-band extensions exist for 
requests and responses, as well as read and 
write data. A typical use of in-band extensions 
is to pass cacheable information or data parity 
Tags: 
Tags are available in the OCP interface to 
control the ordering of responses. Without tags, 

a slave must return responses in the order that 
the requests were issued by the master. 
Similarly, writes must be committed in order. 
With the addition of tags, responses can be 
returned out-of-order, and write data can be 
committed out-of-order with respect to 
requests, as long as the transactions target 
different addresses. The tag links the response 
back to the original request.  
 
Tagging is useful when a master core such as a 
processor can handle out-oforder return, 
because it allows a slave core such as a DRAM 
controller to service requests in the order that is 
most convenient, rather than the order in which 
requests were sent by the master. 
 
Out-of-order request and response delivery can 
also be enabled using multiple threads. The 
major differences between threads and tags are 
that threads can have independent flow control 
for each thread and have no ordering rules for 
transactions on different threads. Tags, on the 
other hand, exist within a single thread and are 
restricted to shared flow control. Tagged 
transactions cannot be re-ordered with respect 
to overlapping addresses. Implementing 
independent flow control requires independent 
buffering for each thread, leading to more 
complex implementations. Tags enable lower 
overhead implementations for out-of-order 
return of responses at the expense of some 
concurrency. 
Threads and Connections: 
To support concurrency and out-of-order 
processing of transfers, the extended OCP 
supports the notion of multiple threads. 
Transactions within different threads have no 
ordering requirements, and independent flow 
control from one another. Within a single 
thread of data flow, all OCP transfers must 
remain ordered unless tags are in use. Transfers 
within a single thread must remain ordered 
unless tags are in use. The concepts of threads 
and tags are hierarchical: each thread has its 
own flow control, and ordering within a thread 
either follows the request order strictly, or is 
governed by tags. 
While the notion of a thread is a local concept 
between a master and a slave communicating 
over an OCP, it is possible to globally pass 
thread information from initiator to target using 
connection identifiers. Connection information 
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helps to identify the initiator and determine 
priorities or access permissions at the target. 
Interrupts, Errors, and other Sideband 
Signaling: 
While moving data between devices is a central 
requirement of on-chip communication 
systems, other types of communications are 
also important.  
Different types of control signaling are required 
to coordinate data transfers (for instance, high-
level flow control) or signal system events 
(such as interrupts). Dedicated point-to-point 
data communication is sometimes required. 
Many devices also require the ability to notify 
the system of errors that may be unrelated to 
address/data transfers. 
 
The OCP refers to all such communication as 
sideband (or out-of-band) signaling, since it is 
not directly related to the protocol state 
machines of the dataflow portion of the OCP. 
The OCP provides support for such signals 
through sideband signaling extensions. 
Errors are reported across the OCP using two 
mechanisms. The error response code in the 
response field describes errors resulting from 
OCP transfers that provide responses. Write-
type commands without responses cannot use 
the in-band reporting mechanism. The second 
method for reporting errors across the OCP 
uses out-of band error fields. These signals 
report more generic sideband errors, including 
those associated with posted write commands. 
 
 
The Open Core Protocol™ (OCP) defines a 
high-performance, bus independent interface 
between IP cores that reduces design time, 
design risk, and manufacturing costs for SOC 
designs.  
An IP core can be a simple peripheral core, a 
high-performance microprocessor, or an on-
chip communication subsystem such as a 
wrapped on-chip bus. 
  
The Open Core Protocol: 
 
1.)Achieves the goal of IP design reuse. The 
OCP transforms IP cores making them      
independent of the architecture and design of 
the systems in which they are used 

2.)Optimizes die area by configuring into the 
OCP only those features needed by the 
communicating cores 
3.)Simplifies system verification and testing by 
providing a firm boundary around each IP core 
that can be observed, controlled, and validated 
 
The Open Core Protocol interface addresses 
communications between the functional units 
(or IP cores) that comprise a system on a chip. 
The OCP provides independence from bus 
protocols without having to sacrifice high 
performance access to on-chip interconnects. 
By designing to the interface boundary defined 
by the OCP, you can develop reusable IP cores 
without regard for the ultimate target system. 
Given the wide range of IP core functionality, 
performance and interface requirements, a fixed 
definition interface protocol cannot address the 
full spectrum of requirements. The need to 
support verification and test requirements adds 
an even higher level of complexity to the 
interface. To address this spectrum of interface 
definitions, the OCP defines a highly 
configurable interface. The OCP’s structured 
methodology includes all of the signals 
required to describe an IP cores’ 
communications including data flow, control, 
and verification and test signals. 
 
Figure 1 shows a simple system containing a 
wrapped bus and three IP core entities: one that 
is a system target, one that is a system initiator, 
and an entity that is both.  
 

 
            Fig.4 system showing wrapped bus and 
OCPinstances 
 
Below table2 shows the basic  signals of the 
OCP protocol. Only Clk and MCmd are 
required. The remaining OCP signals are 
optional. 
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Table 2basic OCP signals 
 
                    
               III.SIGNAL CONNECTIONS 
Figure 5 shows the component signal 
connections. The bridge uses: 
• AMBA AXI-Lite and OCP signals as 
described in the AMBA AXI-Lite 4.0 protocol  
 

 
Fig5 signal connections 
Handshaking mechanism of AXI&OCP 
In AXI 4.0 specification, each channel has 
VALID and READY signals for handshaking. 
The source asserts VALID when the control 
information or data is available. The destination 
asserts READY when it can accept the control 
information or data. Transfer occurs only when 
both the VALID and READY are asserted. 
Figure6 Shows all possible cases of 
VALID/READY handshaking. Note that when 
source asserts VALID, the corresponding 
control information or data must also be 
available at the same time. The arrows in 
Figure.  Indicate when the transfer occurs. A 
transfer takes place at the positive edge of 
clock. Therefore, the source needs a register 
input to sample the READY signal. In the same 
way, the destination needs a register input to 
sample the VALID signal. Considering the 
situation of Figure(c), we assume the source 
and destination use output registers instead of 
combination circuit, they need one cycle to pull 
low VALID/READY and sample the 

VALID/READY again at T4 cycle. When they 
sample the VALID/READY again at T4, there 
should be another transfer which is an error. 
Therefore source and destination should use 
combinational circuit as output. In short, AXI 
protocol is suitable register input and 
combinational output circuit. 
The OCP Bridge buffers address, control and 
data from AXI4-Lite, drives the OCP 
peripherals and returns data and response signal 
to the AXI4-Lite. It decodes the address using 
an internal address map to select the peripheral. 
The bridge is designed to operate when the 
OCP and AXI4-Lite have independent clock 
frequency and phase. For every AXI channel, 
invalid commands are not forwarded and an 
error response generated. That is once a 
peripheral accessed does not exist, the OCP 
Bridge will generate DE CERR as response 
through the response channel (read or write). 
And if the target peripheral exists, but asserts 
PSLVERR, it will give a SLVERR response 

 
Fig 6 waveforms for handshaking mechanism. 
 
                IV FEATURES OF THIS WORK   
The AXI to OCP Bridge translates AXI4-Lite 
transactions intoOCP transactions. The bridge 
functions as a slave on the AXI4-Lite interface 
and as a master on the OCP interface. The AXI 
to OCP Bridge main use model is to connect 
the OCP slaves with AXI masters. Both AXI4-
Lite and OCP transactions are happened during 
rising edge of the clock. 

 
Figure 7 AXI to OCP block diagram 
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The AXI to OCP Bridge block diagram is 
shown in Figure 7 and described in subsequent 
sections. 
AXI LITE SLAVE INTERFACE 
The AXI4-Lite Slave Interface module provides 
a bi-directional slave interface to the AXI. The 
AXI address and data bus widths are always 
fixed to 32-bits and 1024bits. When both write 
and read transfers are simultaneously requested 
on AXI4-Lite, the write request is given more 
priority than the read request. This module also 
contains the data phase time out logic for 
generating OK response on AXI interface when 
OCP slave does not respond. 
 
OCP MASTER INTERFACE 
The OCP Master Interface module provides a 
bi-directional slave interface to the OCP. The 
OCP address and data bus widths are always 
fixed to 32-bits and 1024bits. When both write 
and read transfers are simultaneously requested 
on OCP, the write request is given more 
priority than the read request. 
 
We provide an implementation of AXI4-Lite to 
OCP Bridge which has the following features: 
1.)32-bit AXI slave and OCP master interfaces. 
2.)AXI clock domain completely independent 
of OCP clock domain. 
3.)Support up to 16 OCP peripherals. 
4.)Suports increment,burst transfer,wrapping 
functions on data transfer. 
5.)OCP signals Configuration. 
                           V.CONCLUSION  
 Implemented An Intellectual Property (IP) core 
of AXI4(Advanced Extensible Interface) Lite to 
Open Core Protocol Bridge, which translates 
the AXI4.0-lite transactions into OCP 
Transactions. The bridge provides interfaces 
between the high-performance AXI bus and 
Configurable high performance OCP .In this 
work, the bus bridge was designed to interface 
these protocols which plays a vital role in SoC 
application such as it may lead to application 
failure, if it doesn’t work properly. Initially 
basic AXI 4.0 and OCP protocols are modelled 
separately using VERILOG and are simulated. 
Basically Bus Bridge should convert command 
and data of AXI  formats to acceptable OCP 
formats. This conversion does not ensure 
proper communication unless the timings of 
each protocol were met. Hence the 
interconnecting Bus Bridge wrapper between 

Advanced eXtensible Interface (AXI ) and on 
chip was designed with proper timing delay.  
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