

 ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-4, ISSUE-9, 2017

1

A DEVOTED APPROACH TO TEST THE LIVENESS OF
NETWORK

Dr.M. Ramesh Kumar1, Dr. S.R.Boselin Prabhu2, P.Ponni3, D.Arthi4, P.Preethi5
1Associate Professor, Department of Computer Science and Engineering,

VSB College of Engineering Technical Campus, Coimbatore, TamilNadu, India.
2Associate Professor, Department of Electronics and Communication Engineering,
VSB College of Engineering Technical Campus, Coimbatore, TamilNadu, India.

3,4,5Asst Professor, Department of Computer Science and Engineering,
VSB College of Engineering Technical Campus Coimbatore, TamilNadu, India.

Abstract
Automatic test packet generation is a
framework model that test the liveness,
congestion and performance of an network.
The goal of the system is to automatically
generate test packets to test the network, and
pinpoint faults. This methodology reduces
the data loss and the packet truncation from
the network also it decreases the unwanted
data congestion in the network.
Networks are getting larger and more
complex, yet administrators rely on
rudimentary tools such as and to debug
problems. An automated and systematic
approach for testing and debugging
networks is called “Automatic Test Packet
Generation” (ATPG). ATPG reads router
configurations and generates a device-
independent model. The model is used to
generate a minimum set of test packets to
(minimally) exercise every link in the
network or (maximally) exercise every rule
in the network. Test packets are sent
periodically, and detected failures trigger a
separate mechanism to localize the fault.
ATPG can detect both functional (e.g.,
incorrect firewall rule) and performance
problems (e.g., congested queue). ATPG
complements but goes beyond earlier work in
static checking (which cannot detect liveness
or performance faults) or fault localization.
Keywords: Test packet generation, Test
Packet Selection, Fault localization,
Network Troubleshooting.

1. INTRODUCTION
ATPG (acronym for both Automatic Test

Pattern Generation and Automatic Test Pattern
Generator) is an electronic design automation
method/technology used to find an input (or test)
sequence that, when applied to a digital circuit,
enables automatic test equipment to distinguish
between the correct circuit behavior and the
faulty circuit behavior caused by defects. The
generated patterns are used to test
semiconductor devices after manufacture, and in
some cases to assist with determining the cause
of failure (failure analysis.) The effectiveness of
ATPG is measured by the amount of modeled
defects, or fault models, that are detected and the
number of generated patterns. These metrics
generally indicate test quality (higher with more
fault detections) and test application time
(higher with more patterns). ATPG efficiency is
another important consideration. It is influenced
by the fault model under consideration, the type
of circuit under test (full scan, synchronous
sequential, or asynchronous sequential), the
level of abstraction used to represent the circuit
under test (gate, register-transfer, switch), and
the required test quality. room without any wired
connection to the presentation computer.

A defect is an error caused in a device during
the manufacturing process. A fault model is a
mathematical description of how a defect alters
design behavior. The logic values observed at
the device's primary outputs, while applying a
test pattern to some device under test (DUT), are
called the output of that test pattern. The output
of a test pattern, when testing a fault-free device

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

 ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-4, ISSUE-9, 2017

2

that works exactly as designed, is called the
expected output of that test pattern. A fault is
said to be detected by a test pattern if the output
of that test pattern, when testing a device that
has only that one fault, is different than the
expected output. The ATPG process for a
targeted fault consists of two phases: fault
activation and fault propagation. Fault activation
establishes a signal value at the fault model site
that is opposite of the value produced by the
fault model. Fault propagation moves the
resulting signal value, or fault effect, forward by
sensitizing a path from the fault site to a primary
output.

Testing liveness of a network is a
fundamental problem for ISPs and large data
center operators. Sending probes between every
pair of edge ports is neither exhaustive nor
scalable . It suffices to find a minimal set of end-
to-end packets that traverse each link. However,
doing this requires a way of abstracting across
device specific configuration files (e.g., header
space), generating headers and the links they
reach (e.g., all-pairs reach¬ability), and finally
determining a minimum set of test packets (Min-
Set-Cover). Even though the networks have
become complex in nature,network engineers
still rely on basic tools and methods for
debugging which requires an network engineer’s
utmost concentration and dedication.

Network engineers past experience and
wisdom is put into test when a network is
troubleshooted and this is difficult and time
consuming.So,our goal is to automatically detect
the reasons for troubleshooting and localizing
the faults. Consider two examples.

Example 1: Suppose a router with a faulty
line card starts dropping packets silently. Alice,
who administers 100 routers, receives a ticket
from several unhappy users complaining about
connectivity. First, Alice examines each router
to see if the configuration was changed recently
and concludes that the configuration was
untouched. Next, Alice uses her knowledge of
the topology to triangulate the faulty device
with and . Finally, she calls a
colleague to replace the line card.

Example 2: Suppose that video traffic is

mapped to a specific queue in a router, but
packets are dropped because the token bucket
rate is too low. It is not at all clear how Alice
can track down such a performance fault using

 and .

Troubleshooting a network is difficult for three
reasons. First, the forwarding state is distributed
across multiple routers and firewalls and is
defined by their forwarding tables, filter rules,
and other confi guration parameters. Second,
the forwarding state is hard to observe because
it typically requires manu-ally logging into
every box in the network. Third, there are many
different programs, protocols, and humans
updating the forwarding state simultaneously.
When Alice uses and , she is
using a crude lens to examine the current
forwarding state for clues to track down the
failure.

It is a simplified view of network state. At the

bottom of the figure is the forwarding state used
to forward each packet, consisting of the L2 and
L3 forwarding information base (FIB), access
control lists, etc. The forwarding state is written
by the control plane (that can be local or remote
as in the SDN.

The model and should correctly implement the
network ad-ministrator’s policy. Examples of
the policy include: “Security group X is isolated
from security Group Y,” “Use OSPF for
routing,” and “Video traffic should receive at
least 1 Mb/s.”

We can think of the controller compiling the

policy (A) into device-specific configuration
files (B), which in turn determine the
forwarding behavior of each packet (C). To
ensure the net-work behaves as designed, all
three steps should remain consis-tent at all
times, i.e., . In addition, the topology,
shown to the bottom right in the figure, should
also satisfy a set of liveness properties .
Minimally, requires that sufficient links and
nodes are working; if the control plane specifies
that a laptop can access a server, the desired
outcome can fail if links fail. can also specify
performance guarantees that detect flaky links.

Recently, researchers have proposed tools to

check that , enforcing consistency between
policy and the config-uration. While these
approaches can find (or prevent) software logic
errors in the control plane, they are not designed
to identify liveness failures caused by failed
links and routers, bugs caused by faulty router
hardware or software, or performance problems
caused by network congestion. Such failures

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

 ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-4, ISSUE-9, 2017

3

require checking for and whether . Alice’s
first problem was with (link not working), and
her second problem was with (low level
token bucket state not reflecting policy for
video bandwidth).

In fact, we learned from a survey of 61

network operators that the two most common
causes of net-work failure are hardware failures
and software bugs, and that problems manifest
themselves both as reachability failures and
throughput/latency degradation. Our goal is to
automatically de-tect these types of failures.

The main contribution of this paper is what

we call an Auto-matic Test Packet Generation
(ATPG) framework that automat-ically
generates a minimal set of packets to test the
liveness of the underlying topology and the
congruence between data plane state and
configuration specifications. The tool can also
auto-matically generate packets to test
performance assertions such as packet latency.
In Example 1, instead of Alice manually de-
ciding which packets to send, the tool does
so periodically on her behalf. In the Example
the tool determines that it must send packets
with certain headers to “exercise” the video
queue, and then determines that these packets
are being dropped.

ATPG detects and diagnoses errors by
independently and ex-haustively testing all
forwarding entries, firewall rules, and any
packet processing rules in the network. In
ATPG, test packets are generated
algorithmically from the device confi guration
files and FIBs, with the minimum number of
packets required for complete coverage. Test
packets are fed into the network so that every
rule is exercised directly from the data plane.
Since ATPG treats links just like normal
forwarding rules, its full cov-erage guarantees
testing of every link in the network. It can also
be specialized to generate a minimal set of
packets that merely test every link for network
liveness. At least in this basic form, we feel that
ATPG or some similar technique is fundamental
to networks: Instead of reacting to failures,
many network operators such as Internet2
proactively check the health of their network
using pings between all pairs of sources. How-
ever, all-pairs does not guarantee testing of
all links and has been found to be unscalable for

large networks such as PlanetLab .
Organizations can customize ATPG to meet

their needs; for example, they can choose to
merely check for network liveness (link cover)
or check every rule (rule cover) to ensure
security policy. ATPG can be customized to
check only for reachability or for performance
as well.

ATPG can adapt to constraints such as
requiring test packets from only a few places in
the network or using special routers to generate
test packets from every port. ATPG can also be
tuned to allocate more test packets to exer-cise
more critical rules. For example, a healthcare
network may dedicate more test packets to
Firewall rules to ensure HIPPA compliance.

Put another way, we can check every rule in

every router on the Stanford backbone 10 times
every second by sending test packets that
consume less than 1% of network bandwidth.
The link cover for Stanford is even smaller,
around 50 packets, which allows proactive
liveness testing every millisecond using 1% of
net-work bandwidth.

2. A SURVEY OF NETWORK
OPERATORS

There are six most common symptoms,
four cannot be detected by static checks of the
type (throughput/ latency, intermittent
connectivity, router CPU utilization, con-
gestion) and require ATPG-like dynamic
testing. Even the re-maining two failures
(reachability failure and security Policy
Violation) may require dynamic testing to
detect forwarding plane failures.

a) Symptoms of Network Failure
b) Causes of Network Failure

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

 ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-4, ISSUE-9, 2017

4

Causes: The two most common symptoms
(switch and router software bugs and hardware
failure) are best found by dynamic testing.

Cost of troubleshooting: Two metrics capture

the cost of network debugging—the number of
network-related tickets per month and the
average time consumed to resolve a ticket (Fig.
2). There are 35% of networks that generate
more than 100 tickets per month. Of the
respondents, 40.4% estimate it takes under 30
min to resolve a ticket. However, 24.6% report
that it takes over an hour on average.

Tools: Table II shows that ping, traceroute

and SNMP are by far the most popular tools.
When asked what the ideal tool for network
debugging would be, 70.7% reported a desire
for automatic test generation to check
performance and correctness. Some added a
desire for “long running tests to detect jitter or
intermittent issues,” “real-time link capacity
monitoring,” and “monitoring tools for network
state.”

In summary, while our survey is small, it

supports the hypoth-esis that network
administrators face complicated symptoms and
causes.

The cost of debugging is nontrivial due to the
frequency of problems and the time to solve
these problems. Classical tools such as and

 are still heavily used, but
administrators desire more sophisticated tools.

3. TEST PACKET GENERATION
ALGORITHM:

1) Algorithm: We assume a set of test
terminals in the network can send and receive
test packets. Our goal is to generate a set of test
packets to exercise every rule in every switch
function, so that any fault will be observed by at
least one test packet.

This is analogous to software test suites
that try to test every possible branch in a
program. The broader goal can be limited to
testing every link or every queue. When
generating test packets,
ATPG must respect two key constraints:
1) Port: ATPG must only use test terminals that
are available;

2)Header: ATPGmust only use headers that
each test terminal is permitted to send. For
example, the network administrator
may only allow using a specific set of VLANs.

3.1 TEST PACKET SELECTION:
 For a network with the switch functions, {
T1,..,Tn} and topology function Ґ, determine the
minimum set of test packets to exercise all
reachable rules, subject to the port and header
constraints.

ATPG chooses test packets using an algorithm
we call Test Packet Selection (TPS). TPS first
finds all equivalent classes between each pair of
available ports.
An equivalent class is a set of packets that
exercises the same combination of rules. It then
samples each class to choose test packets, and
finally compresses the resulting set of test
packets to find the minimum covering set.

Example topology with three switches

 ALL-PAIRS REACHABILITY TABLE:

3.2 PROPERTIES:
 The TPS algorithm has the following useful
properties.
Property 1 (Coverage): The set of test packets
exercise all reachable rules and respect all port
and header constraints.
Proof Sketch: Define a rule to be reachable if it
can be exercised by at least one packet

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

 ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-4, ISSUE-9, 2017

5

satisfying the header constraint, and can be
received by at least one test terminal. A
reachable rule must be in the all-pairs
reachability table; thus, set cover will pick at
least one packet that exercises this rule. Some
rules are not reachable: For example, an IP
prefix may be made unreachable by a set of
more specific prefixes either deliberately
(to provide backup) or accidentally (due to
misconfiguration).
Property 2 (Near-Optimality): The set of test
packets selected by TPS is optimal within
logarithmic factors among all tests giving
complete coverage.
Proof Sketch: This follows from the logarithmic
(in the size of the set) approximation factor
inherent in Greedy Set
Cover.
Property 3 (Polynomial Runtime): The
complexity of finding test packets is O(TDR2)
where is the number of test terminals, D
is the network diameter, and R is the average
number of rules in each switch.
Proof Sketch: The complexity of computing
reachability from one input port is O(DR2) [16],
and this computation is repeated for each test
terminal.

4. FAULT LOCALIZATION:
ATPG periodically sends a set of test packets. If
test packets fail, ATPG pinpoints the fault(s)
that caused the problem.
1) Fault Model: A rule fails if its observed
behavior differs
from its expected behavior. ATPG keeps track
of where rules fail using a result function . For a
rule , the result function is defined as

R(r,pk)= 0, if pk fails at rule r
 R(r,pk)= 1, if pk succeeds at rule r.

 “Success” and “failure” depend on the
nature of the rule: A forwarding rule fails if a
test packet is not delivered to the intended
output port, whereas a drop rule behaves
correctly when packets are dropped. Similarly, a
link failure is a failure of a forwarding
rule in the topology function. On the other hand,
if an output link is congested, failure is captured
by the latency of a test packet going above a
threshold.

4.1 Algorithm: Our algorithm for pinpointing
faulty rules assumes that a test packet will

succeed only if it succeeds at every hop. For
intuition, a ping succeeds only when all the
forwarding rules along the path behave
correctly. Similarly, if a queue is congested, any
packets that travel through it will incur higher
latency and may fail an end-to-end test.
Formally, we have the following.

Assumption 1 (Fault Propagation) R(pk)=1 if
and only if for all r € pk,history, R(r,pk)=1:,
ATPG pinpoints a faulty rule by first computing
the minimal set of potentially faulty rules.
Formally, we have Problem 2.

Problem 2 (Fault Localization): Given a list of
(pk0, R(pk0),(pk1, R(pk1),… tuples, find all that
satisfies, . pki, R(pki,r)=0.

We solve this problem opportunistically and in
steps.
Step 1: Consider the results from sending the
regular test packets. For every passing test,
place all rules they exercise into a set of passing
rules, P.
Step 2: ATPG next trims the set of suspect rules
by weeding out correctly working rules. ATPG
does this using the reserved packets (the packets
eliminated by Min-Set-Cover). ATPG selects
reserved packets whose rule histories contain
exactly one rule from the suspect set and sends
these packets. Suppose a
reserved packet exercises only rule in the
suspect set. If the sending of fails, ATPG infers
that rule is in error; if passes,is removed from
the suspect set. ATPG repeats this process for
each reserved packet chosen in Step 2.
Step 3: In most cases, the suspect set is small
enough after
Step 2, that ATPG can terminate and report the
suspect set. If needed, ATPG can narrow down
the suspect set further by sending test packets
that exercise two or more of the rules in the
suspect set using the same technique underlying
Step 2. If these test packets pass, ATPG infers
that none of the exercised rules
are in error and removes these rules from the
suspect set. If our Fault Propagation assumption
holds, the method will not miss
any faults, and therefore will have no false
negatives.
False Positives: Note that the localization
method may introduce false positives, rules left
in the suspect set at the end of

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

 ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-4, ISSUE-9, 2017

6

Step 3. Specifically, one or more rules in the
suspect set may in fact behave correctly.

 5. USE CASES

We can use ATPG for both functional and
performance testing, as the following use cases
demonstrate.
 Functional Testing

We can test the functional correctness of a
network by testing that every reachable
forwarding and drop rule in the network is
behaving correctly.

Forwarding Rule: A forwarding rule is behaving
correctly if a test packet exercises the rule and
leaves on the correct port with the correct
header.

Upon being tested by making sure a test
packet passes correctly over the link without
header modifications.

Drop Link Rule: A link rule is a special case of
a forwarding rule. It can Rule: Testing drop
rules is harder because we must verify the
absence of received test packets. We need to
know which test packets might reach an egress
test terminal if a drop rule was to fail. To find
these packets, in the all-pairs reacha-bility
analysis, we conceptually “flip” each drop rule
to a broad-cast rule in the transfer functions. We
do not actually change rules in the switches—
we simply emulate the drop rule failure in order
to identify all the ways a packet could reach the
egress test terminals.

6. IMPLEMENTATION

We implemented a prototype system to
automatically parse router configurations and
generate a set of test packets for the network.

A. Test Packet Generator

The test packet generator, written in Python,
contains a Cisco IOS configuration parser and a
Juniper Junos parser. The data-plane
information, including router configurations,
FIBs, MAC learning tables, and network
topologies, is collected and parsed through the
command line interface (Cisco IOS) or XML
files (Junos). The generator then uses the
Hassel header space analysis library to
construct switch and topology functions.

All-pairs reachability is computed using the

 parallel-processing module shipped

with Python. Each process considers a subset of
the test ports and finds all the reachable ports
from each one.

 After reachability tests are complete, re-sults

are collected, and the master process executes
the Min-Set-Cover algorithm. Test packets and
the set of tested rules are stored in a SQLite
database.

B. Network Monitor

The network monitor assumes there are
special test agents in the network that are able
to send/receive test packets. The net-work
monitor reads the database and constructs test
packets and instructs each agent to send the
appropriate packets. Currently, test agents
separate test packets by IP Proto field and
TCP/UDP port number, but other fields, such as
IP option, can also be used. If some of the tests
fail, the monitor selects additional test packets
from reserved packets to pinpoint the problem.
The process repeats until the fault has been
identified. The mon-itor uses JSON to
communicate with the test agents, and uses
SQLite’s string matching to lookup test packets
efficiently.

C. Alternate Implementations

Our prototype was designed to be minimally
invasive, re-quiring no changes to the network
except to add terminals at the edge. In networks
requiring faster diagnosis, the following
extensions are possible.

Cooperative Routers: A new feature could be
added to switches/routers, so that a central
ATPG system can instruct a router to
send/receive test packets. In fact, for
manufacturing testing purposes, it is likely that
almost every commercial switch/router can
already do this; we just need an open inter-face
to control them.

SDN -Based Testing: In a software defined

network (SDN) such as OpenFlow [27], the
controller could directly instruct the switch to
send test packets and to detect and forward
received test packets to the control plane. For
performance testing, test packets need to be
time-stamped at the routers.

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

 ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-4, ISSUE-9, 2017

7

8. RELATED WORK AND DISCUSSION
A. Overhead and Performance

The principal sources of overhead for ATPG
are polling the network periodically for
forwarding state and performing all-pairs
reachability. While one can reduce overhead by
running the offline ATPG calculation less
frequently, this runs the risk of using out-of-
date forwarding information. Instead, we re-
duce overhead in two ways. First, we have
recently sped up the all-pairs reachability
calculation using a fast multithreaded/mul-
timachine header space library.

Second, instead of extracting the complete

network state every time ATPG is triggered, an
incre-mental state updater can signi ficantly
reduce both the retrieval time and the time to
calculate reachability. We are working on real-
time version of ATPG that incorporates both
techniques. Test agents within terminals incur
negligible overhead be- cause they merely
demultiplex test packets addressed to their IP
address at a modest rate (e.g., 1 per millisecond)
compared to the link speeds Gb/s most
modern CPUs are capable of receiving.

B. Limitations

 ATPG has the following limitations.
1) Dynamic boxes: ATPG cannot model boxes

whose internal state can be changed by test
packets. For example, an NAT that
dynamically assigns TCP ports to outgoing
packets can confuse the online monitor as
the same test packet can give different
results.

2) Nondeterministic boxes: Boxes can load-
balance packets based on a hash function of
packet fields, usually combined with a
random seed; this is common in multipath
routing such as ECMP. When the hash
algorithm and parameters are unknown,
ATPG cannot properly model such rules.
However, if there are known packet
patterns that can iterate through all possible
outputs, ATPG can generate packets to
traverse every output.

3) Invisible rules: A failed rule can make a

backup rule active, and as a result, no
changes may be observed by the test
packets. This can happen when, despite a
failure, a test packet is routed to the

expected destination by other rules. In
addition, an error in a backup rule cannot be
detected in normal operation. Another
example is when two drop rules appear in a
row: The failure of one rule is undetectable
since the effect will be masked by the other
rule.

4) Transient network states: ATPG cannot

uncover errors whose lifetime is shorter
than the time between each round of tests.
For example, congestion may disappear
before an available bandwidth probing test
concludes. Finer-grained test agents are
needed to capture abnormalities of short
duration.

5) Sampling: ATPG uses sampling when

generating test packets. As a result, ATPG
can miss match faults since the error is not
uniform all matching headers. In worst case
exhaustive testing is needed.

9. CONCLUSION:
Testing liveness of a network is a fundamental
problem for ISPs and large data center
operators. Sending probes between every pair of
edge ports is neither exhaustive nor scalable
ATPG, however, goes much further than
liveness testing with the same framework.
ATPG can test for reachability policy (by
testing all rules including drop rules) and
performance health (by associating performance
measures such as latency and loss with test
packets). Our implementation also augments
testing with a simple fault localization scheme
also constructed using the header space
framework. As in software testing, the formal
model helps maximize test coverage while
minimizing test packets (Min- Set-Cover). Even
the fundamental problem of automatically
generating test packets for efficient liveness
testing re-quires techniques akin to ATPG.

ATPG, however, goes much further than

liveness testing with the same framework.
ATPG can test for reachability policy (by
testing all rules including drop rules) and
performance health (by associating performance
measures such as latency and loss with test
packets). Our implementation also augments
testing with a simple fault localization scheme
also constructed using the header space
framework. As in software testing, the formal

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

 ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-4, ISSUE-9, 2017

8

model helps maximize test coverage while
minimizing test packets. Our results show that
all forwarding rules in Stanford backbone or
Internet2 can be exercised by a surprisingly
small number of test packets (for Stanford,
and for Internet2).

Our survey results indicate that they are eager
for more sophisticated tools. Other fields of
engineering indi-cate that these desires are not
unreasonable: For example, both the ASIC and
software design industries are buttressed by
billion-dollar tool businesses that supply
techniques for both static (e.g., design rule) and
dynamic (e.g., timing) verification. In fact,
many months after we built and named our
system, we dis-covered to our surprise that
ATPG was a well-known acronym in hardware
chip testing, where it stands for Automatic Test
Pat-tern Generation [2]. We hope network
ATPG will be equally useful for automated
dynamic testing of production networks.

10.REFERENCES:
[1] “ATPG code repository,” [Online].
Available: http://eastzone.github. com/atpg/
[2] “Automatic Test Pattern Generation,” 2013
[Online]. Available:
http://en.wikipedia.org/wiki/Automatic_test_pat
tern_generation
[3] P. Barford, N. Duffield, A. Ron, and J.
Sommers, “Network performance anomaly
detection and localization,” in Proc. IEEE
INFOCOM, Apr. , pp. 1377–1385.
[4] “Beacon,” [Online]. Available:
http://www.beaconcontroller.net/
[5] Y. Bejerano and R. Rastogi, “Robust
monitoring of link delays and faults in IP
networks,” IEEE/ACM Trans. Netw., vol. 14,
no. 5, pp. 1092–1103, Oct. 2006.
[6] C. Cadar, D. Dunbar, and D. Engler, “Klee:
Unassisted and automatic generation of high-
coverage tests for complex systems programs,”
in Proc. OSDI, Berkeley, CA, USA, 2008, pp.
209–224.
[7] M. Canini,D.Venzano, P. Peresini,D.Kostic,
and J. Rexford, “A NICE way to test OpenFlow
applications,” in Proc. NSDI, 2012, pp. 10–10.
[8] A. Dhamdhere, R. Teixeira, C. Dovrolis,
and C. Diot, “Netdiagnoser: Troubleshooting
network unreachabilities using end-to-end
probes and routing data,” in Proc. ACM
CoNEXT, 2007, pp. 18:1–18:12..

[9] N. Duffield, “Network tomography of
binary network performance characteristics,”
IEEE Trans. Inf. Theory, vol. 52, no. 12, pp.
5373–5388, Dec. 2006.
[10] N. Duffield, F. L. Presti, V. Paxson, and D.
Towsley, “Inferring link loss using striped
unicast probes,” in Proc. IEEE INFOCOM,
2001, vol. 2, pp. 915–923.
[11] N. G. Duffield and M. Grossglauser,
“Trajectory sampling for direct traffic
observation,” IEEE/ACM Trans. Netw., vol. 9,
no. 3, pp. 280–292, Jun. 2001.
[12] P. Gill, N. Jain, and N. Nagappan,
“Understanding network failures in data
centers: Measurement, analysis, and
implications,” in Proc. ACM
SIGCOMM, 2011, pp. 350–361.
[13] “Hassel, the Header Space Library,”
[Online]. Available: https://bitbucket.
org/peymank/hassel-public/
[14] Internet2, Ann Arbor, MI, USA, “The
Internet2 observatory data collections,”
[Online]. Available:
http://www.internet2.edu/observatory/archive/d
ata-collections.html
[15] M. Jain and C. Dovrolis, “End-to-end
available bandwidth: Measurement
methodology, dynamics, and relation with TCP
throughput,”
IEEE/ACM Trans. Netw., vol. 11, no. 4, pp.
537–549, Aug. 2003.
[16] P. Kazemian, G. Varghese, and N.
McKeown, “Header space analysis:Static
checking for networks,” in Proc. NSDI, 2012,
pp. 9–9.
[17] R. R. Kompella, J. Yates, A. Greenberg,
and A. C. Snoeren, “IP fault localization via
risk modeling,” in Proc. NSDI, Berkeley, CA,
USA, 2005, vol. 2, pp. 57–70.
[18] M. Kuzniar, P. Peresini, M. Canini, D.
Venzano, and D. Kostic, “A SOFT way for
OpenFlow switch interoperability testing,” in
Proc. ACM CoNEXT, 2012, pp. 265–276.
[19] K. Lai and M. Baker, “Nettimer: A tool for
measuring bottleneck link, bandwidth,” in Proc.
USITS, Berkeley, CA, USA, 2001, vol. 3, pp.
11–11.
[20] B. Lantz, B. Heller, and N. McKeown, “A
network in a laptop: Rapid prototyping for
software-defined networks,” in Proc. Hotnets,
2010, pp. 19:1–19:6.
[21] F. Le, S. Lee, T. Wong, H. S. Kim, and D.
Newcomb, “Detecting network-wide and
router-specific misconfigurations through data

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

 ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-4, ISSUE-9, 2017

9

mining,” IEEE/ACM Trans. Netw., vol. 17, no.
1, pp. 66–79, Feb. 2009.
[22] H. V. Madhyastha, T. Isdal, M. Piatek, C.
Dixon, T. Anderson, A. Krishnamurthy, and A.
Venkataramani, “iplane: An information plane
for distributed services,” in Proc. OSDI,
Berkeley, CA, USA, 2006, pp. 367–380.
[23] A. Mahimkar, Z. Ge, J. Wang, J. Yates, Y.
Zhang, J. Emmons, B. Huntley, and M.
Stockert, “Rapid detection of maintenance
induced changes in service performance,” in
Proc. ACM CoNEXT, 2011, pp.
13:1–13:12.
[24] A. Mahimkar, J. Yates, Y. Zhang, A.
Shaikh, J.Wang, Z. Ge, and C. T. Ee,
“Troubleshooting chronic conditions in large IP
networks,” in Proc. ACM CoNEXT, 2008, pp.
2:1–2:12.
[25] H. Mai, A. Khurshid, R. Agarwal, M.
Caesar, P. B. Godfrey, and S. T. King,
“Debugging the data plane with Anteater,”
Comput. Commun. Rev., vol. 41, no. 4, pp.
290–301, Aug. 2011.
[26] A. Markopoulou, G. Iannaccone, S.
Bhattacharyya, C.-N. Chuah, Y. Ganjali, and C.
Diot, “Characterization of failures in an
operational ip backbone network,” IEEE/ACM
Trans. Netw., vol. 16, no. 4, pp. 749–762, Aug.
2008.
[27] N. McKeown, T. Anderson, H.
Balakrishnan, G. Parulkar, L. Peterson, J.
Rexford, S. Shenker, and J. Turner, “Openflow:

Enabling innovation in campus networks,”
Comput. Commun. Rev., vol. 38, pp. 69–74,
Mar. 2008.
[28] “OnTimeMeasure,” [Online]. Available:
http://ontime.oar.net/
[29] “Open vSwitch,” [Online]. Available:
http://openvswitch.org/
[30] H. Weatherspoon, “All-pairs ping service
for PlanetLab ceased,” 2005 [Online].
Available: http://lists.planet-
lab.org/pipermail/users/2005- July/001518.html
[31] M.Reitblatt,N.Foster, J. Rexford, C.
Schlesinger, andD.Walker, “Abstractions for
network update,” in Proc. ACM SIGCOMM,
2012, pp. 323–334.
[32] S. Shenker, “The future of networking, and
the past of protocols,” 2011 [Online].Available:
http://opennetsummit.org/archives/oct11/shenke
rtue.pdf
[33] “Troubleshooting the network survey,”
2012 [Online]. Available:
http://eastzone.github.com/atpg/docs/NetDebug
Survey.pdf
[34] D. Turner, K. Levchenko, A. C. Snoeren,
and S. Savage, “California fault lines:
Understanding the causes and impact of
network failures,” Comput. Commun. Rev., vol.
41, no. 4, pp. 315–326, Aug. 2010.
[35] P. Yalagandula, P. Sharma, S. Banerjee, S.
Basu, and S.-J. Lee, “S3: A scalable sensing
service for monitoring large networked
systems,” in Proc. INM, 2006, pp. 71–76

