

LUMINESCENCE PROPERTIES OF SRAL₂B₂O₇:EU³⁺ PHOSPHOR FOR GREEN LIGHTING TECHNOLOGY

A.N. Yerpude¹, V.V.Shinde², V.R.Panse³, S. J. Dhoble⁴, N.S.Kokode⁵ ¹Department of Physics, N.H.College, Bramhapuri, Dist- Chandrapur -441206, India ²Department of Electronics, Jankidevi Bajaj College of Science. Wardha, India ³Dept. of Physics, Late.B.S.Arts,N.G. Sci,A.G. Comm. College Sakharkherda -443202 ⁴Department of Physics, RTM Nagpur University, Nagpur -440033, India ⁵N.H.College, Bramhapuri, Dist- Chandrapur -441206, India

Abstract

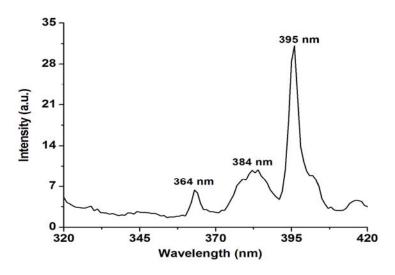
SrAl2B2O7: Eu3+ phosphors were synthesized by the combustion method. The prepared phosphor characterized through XRD technique for phase purity and studied for luminescence. The phosphors can be efficiently excited by 395nm and shows red emission at 615 nm due to 5D0→7F2 transition. Concentration quenching occurs at the 0.5 mole % of Eu3+ ions. Photoluminescence results suggest that this phosphor may be applicable in red emitting application phosphor for an in environmental friendly based lighting technology.

Keywords: Borate, Solid state lighting, Combustion method.

1. Introduction

For the past several years, aluminates based phosphor materials have been one of the widely used candidates for solid state lighting because of their high thermal stability, good chemical stability, low cast and outstanding luminescence properties [1-3]. The development of aluminates based phosphors has shown to be a special attention due to their outstanding application in environmental friendly light emitting devices in last some decade. Conventional methods for fabrication of WLED consist of combination of a blue emitting InGaN chip with Y₃Al₅O₁₂:Ce³⁺ phosphor [4,5]. In recent years, trivalent and divalent rare earth ions doped inorganic phosphors paid much attention because of their potential applications in environmental friendly light emitting diodes [68]. White light emitting diodes are consider as the third generation of solid state lighting technology due to their advantages over traditional light technology such as superior color uniformity, low energy consumption (less CO₂ exhaustion), environment friendliness, long lifetime and high CRI value [9-11]. The paper presents the synthesis of SrAl₂B₂O₇: Eu³⁺ phosphor prepared by combustion method and studied its luminescent properties for solid state lighting.

2. Experimental Procedure


SrAl₂B₂O₇: Eu³⁺ phosphor were prepared by The combustion synthesis. combustion synthesis was carried out at 600°C. The starting raw $Al(NO_3)_2.4H_2O_3$ materials were SrNO₃(A.R.) , H₃BO₃, Eu₂O₃ and urea (NH₂CONH₂). Urea was used as fuel. Eu₂O₃ converted into the nitrate form by mixing of appropriate amount of dilute nitric acid. All the ingredients were mixed according to stochometric ratio in agate mortar and a pasty solution was formed, the solution is then transferred to silica crucible and kept inside a muffle furnace, which is maintained at a constant temperature 600°C. A flame with the foamy powder was formed, and that powder was collected and analysed by X-ray powder diffraction (XRD) and photoluminescence (PL) measurement.

3. Photoluminescence properties

Fig 1 shows the excitation spectrum of SrAl₂B₂O₇: Eu³⁺ monitored at 614nm. The excitation spectrum shows three characteristic

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

bands which are located at 364nm, 384nm and 395 nm, due to intra-configurational 4f-4f transitions of Eu³⁺ ions. Fig. 2 illustrates the emission spectra of SrAl₂B₂O₇: Eu³⁺ phosphors. Emission spectra consist three emission peaks located at about 580 nm, 593nm, 614 nm are assigned to transitions of ${}^{5}D_{0} \rightarrow {}^{7}F_{0}$, ${}^{5}D_{0} \rightarrow {}^{7}F_{1}$, $^{5}\text{D}_{0} \rightarrow ^{7}\text{F}_{2}$ respectively[12]. The highest emission intensity observed at 614 nm , which suggest that the Eu³⁺ ions occupies a center of symmetry in SrAl₂B₂O₇ host [13]. From fig.3. it is observed that the emission intensity increased with the increasing concentration of Eu³⁺ and maximum emission intensity observed at 0.5 mole%. Beyond 0.5 mole% the emission intensity gradually decreases with further increase of concentration of Eu³⁺ due to quenching concentration effect [14]. Photoluminescence results suggest that the phosphor may have potential applications in the field of solid state lighting.

Fig.1. Excitation spectrum of SrAl₂B₂O₇: Eu³⁺ phosphor (λ em= 614 nm).

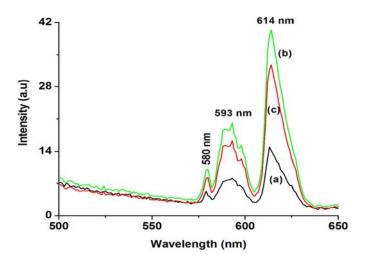
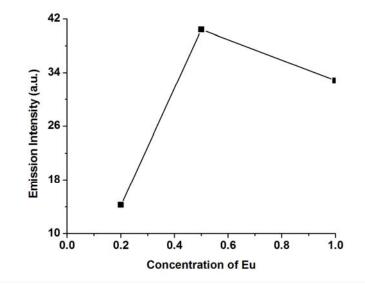



Fig 2. Emission spectrum of SrAl₂B₂O₇: Eu³⁺ phosphor (λ ex= 395nm), Where (a) Eu=0.2 mole% (b) Eu = 0.5 mole% (c) Eu = 1 mole%

Fig. 3. Effect of concentration of doped Eu^{3+} on relative emission intensity at 614nm for SrAl₂B₂O₇ phosphor

4. Conclusions

doped Trivalent europium SrAl2B2O7 phosphors were synthesized by combustion method. The strongest emission wavelength of SrAl2B2O7: Eu3+ is at 614nm for 395 nm excitation attributed to $5D0 \rightarrow 7F2$ transition of Eu3+ ions. The concentration quenching occurs when Eu3+ concentration reached 0.5 mol %. The prepared phosphors could find application in ecofriendly lighting technology.

5. Referencs

- 1. S. Srivastava, S.K. Behera, B.B. Nayak, Dalton Trans. 44, 7765-7769 (2015).
- 2. V.R. Panse, N.S. Kokode, A.N. Yerpude, S.J. Dhoble, Optik 127, 1603-1606 (2016).
- 3. V.R. Panse, A.N.Yerpude, N.S. Kokode, S.J. Dhoble, Optik 127, 4778-4779 (2016).
- A.N.Yerpude, S.J.Dhoble , B.Sudhakar 4. Reddy, Physica B, 454, 126-130 (2014).
- 5. O. Guo, L. Liao, Z. Xia, J. Lumin. 145, 65-70 (2014).
- 6. A.N.Yerpude and S.J.Dhoble, J.Lumin. 132, 1781-1785 (2012).
- 7. K. E. Foka, B. F. Dejene, H. C. Swart, Appl. Phys A. 122,189 (2016).
- 8. A.N.Yerpude and S.J.Dhoble, J.Lumin. 132 2975-2978 (2012).
- 9. L. Naixu, L.Shuqiang, W.Yueming, Z. Bingyao, S. Yueming, Z. Jiancheng, J. Rare Earths, 32, 933-937 (2014).

- 10. Y. Gu, Q.Zhang, H. Wang, Y. Li. J Mater Chem, 21, 17790-17797 (2011).
- S. Nakamura, MRS Bull. 34, 101-107 11. (2009).
- 12. A.N.Yerpude and S.J.Dhoble, Optik, 124, 3567-3570 (2013).
- 13. F. Ren and D.Chen, J. Alloys Comp. 499, 53-56 (2010).
- 14. A.N.Yerpude and S.J.Dhoble, Adv. Mat. Lett. 4(10), 792-796 (2013).