ON THE NON-HOMOGENEOUS TERNARY CUBIC EQUATION

$(x+y)^{2}-3 x y=12 z^{3}$
M.A.Gopalan ${ }^{1}$, Sharadha Kumar ${ }^{2}$
${ }^{1}$ Professor, Department of Mathematics, SIGC, Trichy, Tamilnadu, India.
${ }^{2}$ M.Phil Scholar, Dept. of Mathematics, SIGC, Trichy, Tamilnadu, India.

Abstract

The non-homogeneous cubic equation with three unknowns represented by $(x+y)^{2}-3 x y=$ $12 z^{3}$ is analysed for its patterns of non-zero distinct integer solutions. A few interesting relations among the solutions are presented. Keywords: Non-homogeneous cubic, ternary cubic, integer solutions.

Notations:

1. $t_{m, n}=n\left(1+\frac{(n-1)(m-2)}{2}\right)$-Polygonal number of rank n with size m
2. $C P_{3, n}=\frac{n^{3}+n}{2}$ - Centered triangular pyramidal number of rank n
3. $C P_{6, n}=n^{3}$ - Centered hexagonal pyramidal number of rank n
4. $P_{n}^{5}=\frac{n^{2}(n+1)}{2}$ - Pentagonal pyramidal number of rank n
5. $P R_{n}=n(n+1)$ - Pronic number bof rank n

INTRODUCTION

It is well known that the Diophantine equations are rich in variety [1-3]. In particular, one may refer [4-12] for cubic with three unknowns. In this paper yet another cubic equation with three unknowns is given by $(x+y)^{2}-3 x y=12 z^{3}$ is considered for determining its infinitely many non-zero integer solutions. Also, A few interesting relations among the solutions are exhibited.

Method of analysis:

The non-homogeneous cubic equation to be solved is

$$
\begin{equation*}
(x+y)^{2}-3 x y=12 z^{3} \tag{1}
\end{equation*}
$$

Introducing the linear transformations

$$
\begin{equation*}
x=u+v, y=u-v \tag{2}
\end{equation*}
$$

in (1), it gives

$$
\begin{equation*}
u^{2}+3 v^{2}=12 z^{3} \tag{3}
\end{equation*}
$$

Assume

$$
\begin{align*}
& z=z(a, b)=a^{2}+3 b^{2} \tag{4}\\
& \text { Also, } 12=(3+i \sqrt{3})(3-i \sqrt{3}) \tag{5}
\end{align*}
$$

Substituting (4), (5) in (3) and applying the method of factorization, we have
$(u+i \sqrt{3} v)(u-i \sqrt{3} v)=(3+i \sqrt{3})(3-i \sqrt{3})(a+i \sqrt{3} b)^{3}(a-i \sqrt{3} b)^{3}$
Equating the positive and negative terms in the above equation, we have

$$
\begin{align*}
& (u+i \sqrt{3} v)=(3+i \sqrt{3})(a+i \sqrt{3} b)^{3} \tag{6}\\
& (u-i \sqrt{3} v)=(3-i \sqrt{3})(a-i \sqrt{3} b)^{3} \tag{7}
\end{align*}
$$

Equating the real and imaginary parts in either (6) or (7), we have
$u=3 a^{3}-27 a b^{2}-9 a^{2} b+9 b^{3}$
$v=9 a^{2} b-9 b^{3}+a^{3}-9 a b^{2}$
Substituting the above values of u and v in (2), we get

$$
\begin{align*}
& x=x(a, b)=4 a^{3}-3 a b^{2} \tag{8}\\
& y=y(a, b)=2 a^{3}-18 a b^{2}-18 a^{2} b+18 b^{3} \tag{9}
\end{align*}
$$

Thus, (4), (8) and (9) represent the integer solutions to (1)
Properties:

1. $z(a, a+1)-t_{10, a} \equiv 0(\bmod 3)$
2. $6[4-x(1, b)]$ is a nasty number.
3. $x(1, b)+z(1, b)+33 t_{4, b}=5$
4. $y(a, 1)-2 C P_{6, a}-18 P R_{a}=18$

Note: It is worth to mention that , in addition to (5) , 12 may also be written in the following ways:
way 1: $12=(-3+i \sqrt{3})(-3-i \sqrt{3})$
way 2: $12=(i 2 \sqrt{3})(-i 2 \sqrt{3})$
Following the procedure as above , the
corresponding integer solutions to (10) and (11) are presented below:
Solution for (10):

$$
\begin{aligned}
& x=-2 a^{3}+18 a b^{2}+18 b^{3}-18 a^{2} b \\
& y=-4 a^{3}+36 a b^{2} \\
& z=a^{2}+3 b^{2}
\end{aligned}
$$

Solution for (11):

$$
\begin{aligned}
& x=18 b^{3}-18 a^{2} b+2 a^{3}-18 a b^{2} \\
& y=18 b^{3}-18 a^{2} b-2 a^{3}+18 a b^{2} \\
& z=a^{2}+3 b^{2}
\end{aligned}
$$

However, we have other choices of integer solutions to (1) that are illustrated below:

$$
\begin{equation*}
u^{2}+3 v^{2}=12 z^{3} \times 1 \tag{12}
\end{equation*}
$$

Assume $1=\frac{(1+i \sqrt{3})(1-i \sqrt{3})}{4}$
Substituting (4), (5) and (13) in (12) and employing the method of factorization, define
$(u+i \sqrt{3} v)=\frac{1}{2}(3+i \sqrt{3})(1+i \sqrt{3})(a+i \sqrt{3} b)^{3}$
Equating the real and imaginary parts in (14), we have

$$
\begin{aligned}
& u=-18 a^{2} b+18 b^{3} \\
& v=2 a^{3}-18 a b^{2}
\end{aligned}
$$

Substituting the above values of u and v in (2), we get

$$
\begin{align*}
& x=x(a, b)=-18 a^{2} b+18 b^{3}+2 a^{3}-18 a b^{2} \tag{15}\\
& y=y(a, b)=-18 a^{2} b+18 b^{3}-2 a^{3}+18 a b^{2} \tag{16}
\end{align*}
$$

Thus, (4), (15) and (16) represent the integer solution to (1)

Properties:

1. $z(b+1, b)-t_{10, a} \equiv 1(\bmod 5)$
2. $x(1, b)-18 C P_{6, b}+18 P R_{b}=2$
3. $6 z\left(a, a^{2}\right)$ is a nasty number when

$$
a=\frac{1}{2 \sqrt{3}}\left[(2+\sqrt{3})^{n+1}-(2-\sqrt{3})^{n+1}\right], n=-1,0,1, \ldots
$$

4. $y(a, 1)-x(a, 1)+8 C P_{3, a} \equiv 0(\bmod 2)$
5. $6\left\lfloor y(a, 1)-x(a, 1)+8 P_{a}^{5}+81\right\rfloor$ is a nasty number.

Note: It is to be noted that, in addition to (13), 1 may also be represented as
$1=\frac{(1+i 4 \sqrt{3})(1-i 4 \sqrt{3})}{49}$
For this choice, the corresponding integer solutions to (1) are given by
$x=x(A, B)=49\left[4 A^{3}+144 B^{3}-36 A B^{2}-144 A^{2} B\right]$
$y=y(A, B)=49\left[-22 A^{3}+90 B^{3}+198 A B^{2}-90 A^{2} B\right]$
$z=z(A, B)=49\left\lfloor A^{2}+3 B^{2}\right\rfloor$
Further, considering (10) with (13) , the integer solution to (1) are given by

$$
\begin{aligned}
x & =-4 a^{3}+36 a b^{2} \\
y & =-2 a^{3}+18 a b^{2}+18 a^{2} b-18 b^{3} \\
z & =a^{2}+3 b^{2}
\end{aligned}
$$

Considering (10) with (17) , the integer solution to (1) are found to be

$$
\begin{aligned}
& x=x(A, B)=49\left[-90 A^{2} B+198 A B^{2}-22 A^{3}-54 B^{3}\right] \\
& y=y(A, B)=49\left[54 A^{2} B+234 A B^{2}-26 A^{3}-54 B^{3}\right] \\
& z=z(A, B)=49\left[A^{2}+3 B^{2}\right]
\end{aligned}
$$

Considering (11) with (13), the integer solutions are represented as
$x=-2 a^{3}+18 b^{3}+18 a b^{2}-18 a^{2} b$
$y=-4 a^{3}+36 a b^{2}$
$z=a^{2}+3 b^{2}$
Considering (11) with (17) the integer solutions are obtained as

$$
\begin{aligned}
& x=x(A, B)=49\left[54 A^{2} B+234 A B^{2}-26 A^{3}-54 B^{3}\right] \\
& y=y(A, B)=49\left[144 A^{2} B+36 A B^{2}-4 A^{3}-144 B^{3}\right] \\
& z=z(A, B)=49\left[A^{2}+3 B^{2}\right]
\end{aligned}
$$

REFERENCES

[1] Dickson. L.E., "History of the Theory of Numbers", Vol 2, Diophantine analysis, New York, Dover, 2005.
[2] Mordell. L.J., "Diophantine Equations", Academic Press, New York, 1969.
[3] Carmichael. R.D., "The Theory of numbers and Diophantine Analysis" New York, 1959.
[4] Gopalan. M.A., Geetha. K., On the Ternary cubic Diophantine equation $x^{2}+y^{2}-x y=12 z^{3}$ ", Bessel J Math., 3(2), 2013, 119-123.
[5] Gopalan.M.A., Vidhyalakshmi.S., Kavitha.A., Observation on the Ternary cubic equation $x^{2}+y^{2}+x y=12 z^{3}$, Antarctia J Math., 10(5), 2013,453-460.
[6] Gopalan.M.A., Vidhyalakshmi.S., Lakshmi.K., Lattice points on the non-homogeneous cubic equation $x^{3}+y^{3}+z^{3}+(x+y+z)=0$, Impact J sci Tech., vol 7,No.1,2013,21-25.
[7]Gopalan.M.A.,Vidhyalakshmi.s.,Lakshmi.K., Lattice points on the non-homogeneous cubic equation $x^{3}+y^{3}+z^{3}-(x+y+z)=0$, Impact J sci Tech., vol 7,No.1,2013,51-55.
[8] Gopalan.M.A., Vidhyalakshmi.S., and Mallika.S., On the Ternary non-homogeneous cubic equation $x^{3}+y^{3}-3(x+y)=2\left(3 k^{2}-2\right) z^{3}$, Impact J sci Tech., vol 7,No.1,2013,41-45.
[9] K.Meena, M.A.Gopalan,S.Vidhyalakshmi and S.Arthy Thangam, On the ternary non-homogeneous cubic equation
$4(x+y)^{2}-7 x y+(x+y)+15(x-y)=16\left(z^{3}-1\right)$, Bassel J Math.,4(3) (2014),75-80.
[10] S.Vidhyalakshmi, M.A.Gopalan and A.Kavitha , On the ternary cubic equation $5(X+Y)^{2}-7 X Y+X+Y+1=23 Z^{3}, \quad$ IJIRR, $1(10)$ (2014) 99-101.
[11] M.A.Gopalan, S.Vidhyalakshmi and N.Thiruniraiselvi, On the non-homogeneous ternary cubic Equation $2 a^{2}\left(x^{2}+y^{2}\right)-2 a(k+1)(x+y)+(k+1)^{2}=2^{2 n} z^{3} \quad$, Universe of Emerging Technologies and science, 2(1)(2015)1-5.
[12] M.A.Gopalan, N.Thiruniraiselvi, A.Kavitha, On the ternary cubic Diophantine equation $7 x^{2}-4 y^{2}=3 z^{3}$, International Journal of Recent Scientific Research , 6(9) (2015) 6197-6199.

