

 ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-5, ISSUE-3, 2018

6

MODEL-BASED TESTING OF SERVICE-ORIENTED SOFTWARE

Kaushik Rana1, Jalpa Ramavat2, Durga Prasad Mohapatra3
 1,2Computer Engineering Department, Vishwakarma Government Engineering College,

Chandkheda, Gujarat, India,
3Department of Computer Science &Engineering, NIT Rourkela, Odisha, India

Abstract
Nowadays, many organizations are using
SOA to increase the adaptability of their
systems to react quickly to changes occurring
in their environments. Due to the dynamic
nature of SOA, its testing frequency is high.
This results in an expensive process of test
path construction and generation of test
cases, each time SOA-based software is
tested. While testing SOA-based software, we
have to generate test paths and test data
values for each of the services involved in the
business workflow. In this scenario,
generation, and identification of test paths
and test cases have become challenging
factors as the raw code for web services and
the associated test scripts are proprietary to
the service providers and invisible to the
tester. This situation can be avoided, if we
generate test paths and test cases from the
models describing SOA-based software. This
paper introduce a novel technique to test
SOA-based software using BPMN diagram.
Index Terms: BPMN, Model,
Service-Oriented Software, Testing.

I. INTRODUCTION

 Nowadays, many organizations are looking
forward to increase the adaptability of their
systems to react quickly to changes occurring in
their environments. This requirement of system
adaptability is best addressed by service-oriented
architecture (SOA), as it facilitates the
availability of environmental services provided
by the third parties. This feature of SOA rapidly
increases the adoption of SOA by different
organizations. Hence, service-oriented
architecture (SOA) is being used in design,

development, deployment and management of
different business services. These business
services in SOA can also be used by other
composite applications through publishing and
binding interfaces. SOA integrates
heterogeneous services and enables them for
effectively exchanging information among
member enterprises to process remote orders,
inquiries, payroll, billing, HR and information
delivery etc.

Due to the dynamic nature of SOA, its testing

frequency is high. This results in an expensive
process of test path construction and generation
of test cases, each time an SOA-based software
is tested. While testing SOA-based software, we
have to generate test paths and test data values
for each of the services involved in the business
workflow. The assignment of test data values
uses six different assertion types such as existing
data value from the same interface, a constant
value, a set of alternate values, a value range, a
concatenated value and a computed value [7]. To
enhance the efficiency of testing, wrong/faulty
data plays a greater role. The use of faulty data in
testing SOA-based software increases the fault
tolerance of SOA-based software.

In SOA, faulty data can be categorized into
two sets with two different perspectives such as
(i) to test the services in isolation and (ii) to test
the service as a component in the system
environment [8].

In this scenario, generation, and identification
of test paths and test cases have become
challenging factors as the raw code for web
services and the associated test scripts are
proprietary to the service providers and invisible
to the tester. This situation can be avoided, if we

 INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

 ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-5, ISSUE-3, 2018

7

generate test paths and test cases from the
models describing SOA-based software.

II. OUR APPROACH: TESTING OF

SERVICE-ORIENTED SOFTWARE USING

BPMN DIAGRAM

In this section, we propose a model-based
approach for testing SOA-based software using
BPMN diagram. The business process modeling
notation (BPMN) is a graphical notation that
depicts the steps in a business process. It also
depicts the end to end flow of a business process.
The notation has been specifically designed to
coordinate the sequence of business processes or
services and the messages that flow between
different processes or services present in a
related set of activities [3]. The main advantages
of using a BPMN model for testing of
service-oriented software are as follows:

1. It describes the services efficiently in order

to analyze, and understand the SOA-based
software.

2. It also identifies which test paths need to be

run to execute a particular business flow.

This BPMN model is usually designed and

created in the early stage of software
development life cycle. However, test case data
generation can be made parallel to software
development in order to reduce time and effort.
Thus, testers will have time to pay attention to
test the software before delivery.

A BPMN diagram contains four basic element

categories (i) flow objects: these are the events,
activities and gateways (ii) connecting objects:
these are the sequence flow, message flow and
association (iii) swim lanes: these are the pools
and lanes (iv) artifacts: these are the data objects,
group and annotations. These four categories
enable the creation of simple business process
diagrams (BPDs). Even BPDs also permit
making new types of flow objects or artifacts, to
make the diagram more understandable. This
specification also includes semantic information
related to SOA-based software.

BPMN diagram is widely used in business

process modeling (BPM). BPM is the activity of

representing the enterprise processes so that, the
current process may be analyzed and improved.
BPMN model consists of simple diagrams
constructed from a limited set of graphical
elements such as flow objects, connecting
objects, swimlanes, and artifacts. While BPMN
shows the flow of data (messages), and the
association of data artifacts to activities, it is not
a data flow diagram. The BPMN diagram can
also be used to test service-oriented software.

Our proposal for testing can be visualized as
shown in Fig. 2.1.

Figure 2.1 Proposed testing approach

Below, we present our proposed approach as an
algorithmic pseudo-code.

Algorithm 1 Testing of Service-Oriented

Software Using BPMN Diagram
(TSOSBD)

1. Model the Process: design the BPMN
diagram of the service-oriented
software.

2. Model the Process: design the BPMN
diagram of the service-oriented
software.

3. Generate Test Paths: apply depth first
search (DFS) method for generating
the test paths.

4. Execute Test Cases: apply test cases
on generated test paths.

Let us follow the steps (represented by circles)

one by one. The first step portrayed is model the
process. This is an external task, in which a
general task process, like travel reservation,
shopping item etc. is being modeled using
business process modeling notation (BPMN).
Then, we export the BPMN file in .bpmn format.
The XML DOM parser reads it and transforms
it's relevant data into a directed graph, this stage

 INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

 ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-5, ISSUE-3, 2018

8

is called, as Generate Control Flow Graph.
Then, the test paths are generated from CFG
using depth first search (DFS) method. Finally,
the test cases are executed on the generated test
paths.

1. Model the Process
The service call specific control flow, leads us

to choose a graph-based modeling approach for
the business process. Each service or service call
request in our model will be represented as an
individual node. In the case of service-oriented
software, where a service may call other services
can be represented as another node and an edge
represents the control flow from one service
node to another service node. This inherent
nature of service-oriented software leads us to
choose a graph-based modeling approach to
represent the business processes. This also has to
do with the increased usage of business process
modeling languages such as BPMN [3] and
WS-BPEL [4].

Most companies have already modeled their

business processes with any one of these two
languages, which makes easy the model
generation, often reduces execution costs and
effectively communicates the business processes
in a standard manner. A BPMN defines a
business process diagram (BPD), based on a
flowcharting technique tailored for creating
graphical models of business processes. The web
service business process execution language
(WS-BPEL) [4], is an OASIS's standard
executable language for specifying actions
within business processes with web services. A
business process model does not necessarily
have to be implemented as an automated
business process in a process execution
language. Even by design, there are some
limitations on the process topologies that can be
described in WS-BPEL, so it is possible to
represent processes in BPMN that cannot be
mapped to WS-BPEL. Moreover, there are
concepts, such as ad-hoc sub-proceses, that
BPMN can represent that may not be
implemented with any technology [3]. Since
there is a serious advantage of BPMN and as it
supports convenient graph-based modeling, we
decided to use BPMN with the help of Bizagi
Modeler, a freeware tool [1]. The bizagi modeler

is a modeling tool much like Microsoft Visio
Professional [2] or Sparxsystems Enterprise
Architect 12.1 [6], but more targeted towards the
creation of BPMN models. It supports BPMN
model exchange through export or import with
.bpmn format.

1.1 A BPMN Example: Online Shopping

System (OSS)
The online shopping system (OSS) described

in Section 5.1 can be represented as a set of
business services in a BPMN diagram as shown
in Fig. 2.2. We have used Bizagi Modeler tool
[1] to design OSS. It shows various service tasks
such as product registration, courier company
registration, login, sign up, third-party login,
search product, add_to_cart, make_payment and
make_courier. These service tasks are being
provided by a pool or more precisely entities
such as customer, payment gateway provider,
online retailer, third-party login provider,
product seller, shipping and courier company.
Other tasks are product registration request,
courier company registration request, login
request, sign up request, third-party login
request, search product request, make_payment
request and make_courier request. The
information seen on the edges might represent
one of the following two different things
depending on it's source. If it is a service or task,
it represents it's output data, on the other hand if
it is a gateway, it contains the condition that
makes the control flow in that direction.

Figure 2.2 A BPMN diagram for ``online
shopping system (OSS)"
Once the business process modeling is
completed, it is exported in .bpmn format as
shown in Fig. 2.3.

 INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

 ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-5, ISSUE-3, 2018

9

Figure 2.3 Exporting BPMN with bizagi modeler

2. Generate Control Flow Graph (CFG)
First, we briefly describe our CFG generation

algorithm. Then, we present the pseudo-code of
the algorithm. Subsequently, we discuss the
complexity of our algorithm.

2.1.1 Overview of the CFG Generation
Algorithm

Before execution of a business process, the
CFG of a business process is constructed
statically. It describes the sequence in which
different tasks or service tasks of a business
process get executed. Stating, in other words, a
control flow graph (CFG) describes how the
control flows through the business processes.
Before presenting our proposed algorithm, few
more definitions that would be used in our
algorithm are introduced in this section.

Definition 2.1 Unique Node Number

Assignment:
A unique node number is an incremental

assignment of numeric numbers to each task of
BPMN diagram.

Definition 2.2 BPMN Version (V):
Version (V) of a BPMN diagram comes into

picture if an evolution happens in the BPMN
diagram causing a change in the business flow of
the system. This evolution may take effect due to
the changes in the business service specification
or the changes to the customer requirements.
Once the changes have been incorporated, then
the corresponding task of the BPMN diagram are
updated and the BPMN diagram is redrawn
resulting in a new version

(say V1 to V2). For simplification of the

proposed approach, we assume that the BPMN
has initial version V1.

In the algorithm, we first create two special
nodes start and stop corresponding to nodes
startEvent and endEvent of BPMN model to
define the start and end of business flow. Then
after, we extract the root node process and it's
subchild nodes task or serviceTask and create
nodes in CFG and assign them unique node
numbers and attributes. We add a control flow
edge if textnode value of outgoing element of
subchild ni equals textnode value of incoming
element of subchild nj. We now present our CFG
generation algorithm for our business process in
the form of pseudo-code as below:

Algorithm
2

Control Flow Graph (CFG)
Generation Algorithm.

Input : A BPMN model // in .bpmn format
Output : Control Flow Graph

1. Node Construction

(a)
Create two special nodes
start and stop
corresponding to nodes
startEvent and endEvent

(b)

For each root node
process do the followings

 For each subchild node
task or serviceTask node
do the following

 i. Create node ni
ii. Assign the node ni
with unique node
number.

2. Add control flow edges

(b)

For each root node
process, do the following

 For each subchild node
task or serviceTask node
do the following

i. Add control flow edge
from node (ni,nj), if
textnode value of
outgoing element of
subchild ni equals
textnode value of
incoming element of
subchild nj .

 INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

 ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-5, ISSUE-3, 2018

10

Figure 2.4 Control flow graph of ``Online

Shopping System (OSS)"
Fig. 2.4 shows the control flow graph of Fig.

2.2. The different numbered tasks serve as the
nodes of the control flow graph. An edge from
one node to another exists if the execution of the
task representing the first node can result in the
transfer of control to another node.

2.1 Complexity Analysis of CFG

Generation Algorithm
(1) Time complexity
To compute the time complexity of our CFG

generation algorithm, we consider each step of
the algorithm. Step 1(a) requires O(1) constant
time. Step 1(b)i requires O(1) constant time, Step
1(b)i} requires O(n2) time and finally the Step
2(a)i requires O(n2) time. Hence the time
complexity of our algorithm is O(n2), where n is
the input size.

(2) Space complexity
The space complexity of our CFG generation

algorithm would be O(n), since XML DOM
parser maintains a hash table for CFG, and the
space complexity of every reasonable hash table
is O(n), where n is the input size.

2.2 Implementation of CFG Generation

Algorithm
As we said in the previous section, Bizagi

Modeler exports a file with all the information
we need to create a control flow graph. The
XML DOM parser extracts and stores the BPMN
elements in a data structure in such a way that it
facilitates control flow graph generation, graph
searches, and further test case generation. A
BPMN file fragment is shown in Fig. 2.5. In
order to search a service used in the BPMN
diagram, the XML DOM parser traverses the
DOM tree to find serviceTask element node.
While traversing the services or tasks it also
stores the attribute values of id, name and other
elements such as incoming, outgoing, which are
the element nodes needed for generating CFG.
Fig. 2.6 shows the internal data structure
maintained by XML DOM parser. The unique
node number is assigned by the parser.

The parser compares each outgoing element
with incoming element to determine the possible
control flows among the services or tasks. To
easily describe the control flow from outgoing to
incoming elements, we highlight the common ids
with same color. The parser uses these elements
and builds the CFG.

Figure 2.5 A BPMN file fragment

 INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

 ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-5, ISSUE-3, 2018

11

Figure 2.6 Internal data structure of XML

DOM parser
3. Generate Test Paths

Once we have generated the CFG, it is the time
to generate test paths. Test paths can be
generated by applying depth first search (DFS)
method or breadth first search (BFS) method. In
DFS, the path is generated by starting with the
root node and exploring as far as possible along
each branch before backtracking. In BFS, the
path is generated by exploring all the nodes at
one level completely and then moving into the
next level and so on. The limitation of BFS is
that it can lead to generate an exponential
number of test paths which will increase the time
complexity. The paths to be tested are coming
out in exponential, out of which very few are
useful, even there is a need of testing only basic
paths. With this problem, and considering the
efficiency of DFS method to generate test path,
we use DFS method to generate test paths from
BPMN diagram. By using this approach, the
useless test paths are eliminated which in turn
reduces the time complexity. The generated test
paths for the CFG given in Fig. 2.4 using DFS
are given below:

1. start →1 → 2 → stop.

2. start →3 → 4 → 13 →15 → 16 → 17 →
stop.

3. start →7 → 8 → 13 →15 → 16 → 17 →
stop.

4. start →9 → 10 → 13 →15 → 16 → 17 →
stop.

5. start →11 → 12 → 13 →15 → 16 → 17
→ stop.

6. start →5 → 6→ stop.

7. start →3 → 4 → 13 →15 → 14 →15 →

16 → 17→ stop.

8. start →7 → 8 → 13 →15 → 14 →15 →
16 → 17→ stop.

9. start →9 → 10 → 13 →15 → 14 →15 →
16 → 17→ stop.

10. start →11→ 12 → 13 →15 → 14 →15
→ 16 →17→ stop

4. Execute Test Cases
The main goal of this step is to generate test

case data, and execute the test cases for each
business process based on the generated test
paths.

We choose a path coverage-based test case

generation strategy where test cases are designed
such that all linearly independent paths in the
business process are executed at least once. A
linearly independent path is any path through the
program that introduces at least one new edge
that is not included in any other linearly
independent path [5].

Our goal is to provide semi-automatically

input values which will exercise each linearly
independent path previously created. To test a
specific path, a number of service tasks or tasks
need to be executed. In regular cases, most
service tasks or tasks require some type of input
data. The only way to do it is by whitening up a
bit for testing. In other terms, the service
providers will have to give a description of what
are the possible inputs and outputs of a service
tasks or tasks. Let the service provider declares
inputs, data types and restrictions for each of the
service or task as shown in Table II.I. When we
have sufficient information of tasks or service
tasks, we can discover what inputs will fit, i.e,
what input data will produce results matching
those restrictions and corresponding test paths.

Once we have such information as provided in
Table II.II we can supply test cases in such a way
that each identified test path is covered. For
example, we can exercise test path 1 by
supplying test case set {product name=mi3,

 INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

 ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-5, ISSUE-3, 2018

12

quantity=1, price=12000, seller name=xiaomi,
contact address=china} as input, and observe
the test case status as valid. This test path covers
the unique node numbers 1 and 2 of CFG.
Similarly, we can test all the test paths by
executing appropriate test cases and check the
output. These test cases along with their status
are shown in Table II.II.

TABLE II.I: Inputs, data types and restrictions of
service or task

TABLE II.II: Inputs, data types and restrictions
of service or task

III. CONCLUSION

In this paper we illustrated the testing
approaches for SOA-based software using
BPMN diagrams. First, we described our testing
algorithm for service-oriented software using
BPMN diagram. In that we presented a CFG
generation algorithm and its implementation.
Finally, we tested the test paths of CFG by
applying various test cases.

 REFERENCES
[1] Bizagi Modeler Tool, [online]. Available:

http://www.bizagi.com, [accessed on
18/03/2014].

[2] Microsoft Visio Professional 2016, [online].
Available:
https://www.microsoft.com/en-in/evalcenter
/evaluate-visio-professional-2016, [accessed
on 18/03/2014].

[3] Object Management Group (OMG) Business
Process Model and Notation (BPMN),
[online]. Available: http://www.bpmn.org/,
[accessed on 18/03/2014].

 INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

 ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-5, ISSUE-3, 2018

13

[4] OASIS Web Services Business Process
Execution Language (WS-BPEL), [online].
Available: https://www.oasis-open.org/,
[accessed on 18/03/2014].

[5] Rajib Mall, Fundamentals of Software
Engineering, PHI Learning Private Limited,
second edition, February 2009.

[6] Sparxsystems Enterprise Architect 12.1,
[online]. Available:
http://www.sparxsystems.com/products/ea/1
2.1/index.html, [accessed on 18/03/2014].

[7] Sneed, H. M., and Huang, S., “WsdlTest- A
Tool for Testing Web Services”, In
Proceedings of Eighth International
Symposium on Web Site Evolution, 2006.

[8] Zhang, J., and Qiu, R., “Fault
Injection-based Test Case Generation for
SOA-oriented Software”, In Proceedings of
IEEE International Conference on Service
Operations and Logistics, and Informatics,
Pages 1070-1078, 2006.

