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Abstract 
Internet services and applications have become 
an inextricable part of daily life, enabling 
communication and the management of personal 
information from anywhere. To accommodate 
this increase in application and data complexity, 
web services have moved to a multi-tiered design 
wherein the web server runs the application 
front-end logic and data is outsourced to a 
database or file server. 

 
In this paper, we present Double Guard, an 

Intrusion detection(IDS) system that models the 
network behavior of user sessions across both 
the front-end web server and the back-end 
database. By monitoring both web and 
subsequent database requests, we are able to 
ferret out attacks that independent IDS would 
not be able to identify. Furthermore, we quantify 
the limitations of any multi-tier IDS in terms of 
training sessions and functionality coverage. We 
implemented Double Guard using an Apache 
web server with MySQL and lightweight 
virtualization. We then collected and processed 
real-world traffic over a 15-day period of system 
deployment in both dynamic and static web 
applications. Finally, using Double Guard, we 
were able to expose a wide range of attacks with 
100% accuracy while maintaining 0% false 
positives for static web services and 0.6% false 
positives for dynamic web services. 
Index Terms: Multi-tier, MYSQL, Apache web 
server 

I. INTRODUCTION 
Web-delivered services and applications have 

increased in both popularity and complexity over 
the past few years. Daily tasks, such as banking, 
travel, and social networking, are all done via the 
web. Such services typically employ a web server 

front-end that runs the application user interface 
logic, as well as a back-end server that consists of a 
database or file server. Due to their ubiquitous use 
for personal and/or corporate data, web services 
have always been the target of attacks. These 
attacks have recently become more diverse, as 
attention has shifted from attacking the front-end to 
exploiting vulnerabilities of the web applications in 
order to corrupt the back-end database system (e.g., 
SQL injection attacks). A plethora of Intrusion 
Detection Systems (IDS) currently examine 
network packets individually within both the web 
server and the database system. However, there is 
very little work being performed on multi-tiered 
Anomaly Detection (AD) systems that generate 
models of network behavior for both web and 
database network interactions.                           

 
In such multi-tiered architectures, the back-end 

database server is often protected behind a firewall 
while the web servers are remotely accessible over 
the Internet. Unfortunately, though they are 
protected from direct remote attacks, the back-end 
systems are susceptible to attacks that use web 
requests as a means to exploit the back-end. 

 
To protect multi-tiered web services, Intrusion 

detection systems (IDS) have been widely used to 
detect known attacks 

by matching misused traffic patterns or 
signatures. A class of IDS that leverages machine 
learning can also detect unknown attacks by 
identifying abnormal network traffic that deviates 
from the so-called “normal” behavior previously 
profiled during the IDS training phase. Individually, 
the web IDS and the database IDS can detect 
abnormal network traffic sent to either of them. 
However, we found that these IDS cannot detect 
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cases wherein normal traffic is used to attack the 
web server and the database server. For example, if 
an attacker with non-admin privileges can log in to 
a web server using normal-user access credentials, 
he/she can find a way to issue a privileged database 
query by exploiting vulnerabilities in the web 
server. Neither the web IDS nor the database IDS 
would detect this type of attack since the web IDS 
would merely see typical user login traffic and the 
database IDS would see only the normal traffic of a 
privileged user. This type of attack can be readily 
detected if the database IDS can identify that a 
privileged request from the web server is not 
associated with user-privileged access. 
Unfortunately, within the current multi-threaded 
web server architecture, it is not feasible to detect 
or profile such causal mapping between web server 
traffic and DB server traffic since traffic cannot be 
clearly attributed to user sessions. 

 
In this paper, we present Double Guard, a system 

used to detect attacks in multi-tiered web services. 
Our approach can create normality models of 
isolated user sessions that include both the web 
front-end (HTTP) and back-end (File or SQL) 
network transactions. To achieve this, we employ a 

lightweight virtualization technique to assign each 
user’s web session to a dedicated container, an 
isolated virtual computing environment. We use the 
container ID to accurately associate the web request 
with the subsequent DB queries. Thus, Double 
Guard can build a causal mapping profile by taking 
both the web server and DB traffic into account. 

 
 
We have implemented our Double Guard 

container architecture using OpenVZ, and 
performance testing shows that it has reasonable 
performance overhead and is practical for most web 
applications. When the request rate is moderate 
(e.g., under 110 requests per second), there is 
almost no overhead in comparison to an 
unprotected vanilla system. Even in a worst case 
scenario when the server was already overloaded, 
we observed only 26% performance overhead. The 
container-based web architecture not only fosters 
the profiling of causal mapping, but it also provides 
an isolation that prevents future session-hijacking 
attacks. Within a lightweight virtualization 
environment, we ran many copies of the web server 
instances 

in different containers so that each one was 
isolated from the rest. As ephemeral containers can 
be easily instantiated and destroyed, we assigned 
each client session a dedicated container so that, 
even when an attacker may be able to compromise a 
single session, the damage is confined to the 
compromised session; other user sessions remain 
unaffected by it. 

 
Using our prototype, we show that, for websites 

that do not permit content modification from users, 
there is a direct causal relationship between the 
requests received by the front-end web server and 
those generated for the database back-end. In fact, 
we show that this causality-mapping model can be 
generated accurately and without prior knowledge 
of web application functionality. Our experimental 
evaluation, using real-world network traffic 
obtained from the web and database requests of a 
large center, showed that we were able to extract 
100% of functionality mapping by using as few as 
35 sessions in the training phase. Of course, we also 
showed that this depends on the size and 
functionality of the web service or application. 

However, it does not depend on content changes if 
those changes can be performed through a 
controlled environment and retrofitted into the 
training model. We refer to such sites as “static” 
because, though they do change over time, they do 
so in a controlled fashion that allows the changes to 
propagate to the sites’ normality models. 

 
In addition to this static website case, there are 

web services that permit persistent back-end data 
modifications. These services, which we call 
dynamic, allow HTTP requests to include 
parameters that are variable and depend on user 
input. Therefore, our ability to model the causal 
relationship between the front-end and back-end is 
not always deterministic and depends primarily 
upon the application logic. For instance, we 
observed that the back-end queries can vary based 
on the value of the parameters passed in the HTTP 
requests and the previous application state. 
Sometimes, the same application’s primitive 
functionality (i.e., accessing a table) can be 
triggered by many different web pages. Therefore, 
the resulting mapping between web and database 
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requests can range from one to many, depending on 
the value of the parameters passed in the web 
request. 

 
To address this challenge while building a 

mapping model for dynamic web pages, we first 
generated an individual training model for the basic 
operations provided by the web services. We 
demonstrate that this approach works well in 
practice by using traffic from a live blog where we 
progressively modeled nine operations. Our results 
show that we were able to identify all attacks, 
covering more than 99% of the normal traffic as the 
training model is refined. 

Modeling for Static Websites 
 
In the case of a static website, the non-

deterministic map-ping does not exist as there are 
no available input variables or states for static 
content. We can easily classify the traffic collected 
by sensors into three patterns in order to build the 
mapping model. As the traffic is already separated 
by session, we begin by iterating all of the sessions 
from 1 to N. For each rm 2 REQ, we maintain a set 
ARm to record the IDs of sessions in which rm 
appears. The same holds for the database queries; 
we have a set AQs for each qs 2 SQL to record all 
the session IDs. To produce the training model, we 
leverage the fact that the same mapping pattern 
appears many times across different sessions. For 
each ARm, we search for the AQs that equals the 
ARm. When ARm = AQs, this indicates that every 
time rm appears in a session then qs will also 
appear in the same session, and vice versa. 
 

 
 

Fig 1:  Deterministic Mapping Using Session ID of 
the Container (VE). 

Given enough samples, we can confidently 

extract a map-ping pattern rm ! qs. Here, we use a 
threshold value t so that if the mapping appears in 
more than t sessions (e.g., the cardinality of ARm 
or AQs is greater than t), then a mapping pattern 
has been found. If such a pattern appears less than t 
times, this indicates that the number of training 
sessions is insufficient. In such a case, scheduling 
more training sessions is recommended before the 
model is built, but these patterns can also be 
ignored since they may be incorrect mappings. In 
our experiments, we set t to 3, and the results 
demonstrate that the requirement was easily 
satisfied for a static website with a relatively low 
number of training sessions. After we confirm all 
deterministic mappings, we remove these matched 
requests and queries from REQ and SQL 
respectively. Since multiple requests are often sent 
to the web server within a short period of time by a 
single user operation, they can be mapped together 
to the same AQs. Some web requests that could 
appear separately are still present as a unit. For 
example, the read request always precedes the post 
request on the same web page. During the training 
phase, we treat them as a single instance of web 
requests bundled together unless we observe a case 
when either of them appears separately. 

 
Our next step is to decide the other two mapping 

patterns by assembling a white list for static file 
requests, including JPG, GIF, CSS, etc. HTTP 
requests for static files are placed in the EQS set. 
The remaining requests are placed in REQ; if we 
cannot find any matched queries for them, they will 
also be placed in the EQS set. In addition, all 
remaining queries in SQL will be considered as No 
Matched Request cases and placed into N M R. 

 
Figure 1 illustrates the use of the session ID 

provided by the container (VE) in order to build the 
deterministic mapping between http requests and 
the database requests. The request rA has the set 
ARA of f2, 4, 5g, which equals to AQY . Therefore, 
we can decide a Deterministic Mapping rA ! qY . 

 
We developed an algorithm that takes the input of 

training dataset and builds the mapping model for 
static websites. For each unique HTTP request and 
database query, the algorithm assigns a hash table 
entry, the key of the entry is the request or query 
itself, and the value of the hash entry is AR for the 
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request or AQ for the query respectively. The 
algorithm generates the mapping model by 
considering all three mapping patterns that would 
happen in static websites. The algorithm below 
describes the training process. 

 
Table 1:  Static Model Building Algorithm 

 
 

Testing for Static Websites 
Once the normality model is generated, it can be 

employed for training and detection of abnormal 
behavior. During the testing phase, each session is 
compared to the normality model. We begin with 
each distinct web request in the session and, since 
each request will have only one mapping rule in the 
model, we simply compare the request with that 
rule. The testing phase algorithm is as follows: 

 
If the rule for the request is Deterministic 

Mapping r ! Q (Q 6= ;), we test whether Q is a 
subset of a query set of the session. If so, this 
request is valid, and we mark the queries in Q. 
Otherwise, a violation is detected and considered to 
be abnormal, and the session will be marked as 
suspicious. 

 
If the rule is Empty Query Set r ! ;, then the 

request is not considered to be abnormal, and we do 
not mark any database queries. No intrusion will be 
reported. 

 
For the remaining unmarked database queries, we 

check to see if they are in the set N M R. If so, we 
mark the query as such. 

 
Any untested web request or unmarked database 

query is considered to be abnormal. If either exists 
within a session, then that session will be marked as 
suspicious. 

 
In our implementation and experimenting of the 

static test-ing website, the mapping model 
contained the Deterministic Mappings and Empty 
Query Set patterns without the No Matched Request 
pattern. This is commonly the case for static 
websites. As expected, this is also demonstrated in 
our experiments in section V. 
 
Modeling of Dynamic Patterns 

In contrast to static web pages, dynamic web 
pages allow users to generate the same web query 
with different param-eters. Additionally, dynamic 
pages often use POST rather than GET methods to 
commit user inputs. Based on the web server’s 
application logic, different inputs would cause 
different database queries. For example, to post a 
comment to a blog article, the web server would 
first query the database to see the existing 
comments. If the user’s comment differs from 
previous comments, then the web server would 
automatically generate a set of new queries to insert 
the new post into the back-end database. Otherwise, 
the web server would reject the input in order to 
prevent duplicated comments from being posted 
(i.e., no corresponding SQL query would be 
issued.) In such cases, even assigning the same 
parameter values would cause different set of 
queries, depending on the previous state of the 
website. Likewise, this non-deterministic mapping 
case (i.e., one-to-many mapping) happens even 
after we normalize all parameter values to extract 
the structures of the web requests and queries. Since 
the mapping can appear differently in different 
cases, it becomes difficult to identify all of the one-
to-many mapping patterns for each web request. 
Moreover, when different operations occasionally 
overlap at their possible query set, it becomes even 
harder for us to extract the one-to-many mapping 
for each operation by comparing matched requests 
and queries across the sessions. 

 
Since the algorithm for extracting mapping 
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patterns in static pages no longer worked for the 
dynamic pages, we created another training method 
to build the model. First, we tried to categorize all 
of the potential single (atomic) operations on the 
web pages. For instance, the common possible 
operations for users on a blog website may include 
reading an article, posting a new article, leaving a 
comment, visiting the next page, etc. All of the 
operations that appear within one session are 
permutations of these operations. If we could build 
a mapping model for each of these basic operations, 
then we could compare web requests to determine 
the basic operations of the session and obtain the 
most likely set of queries mapped from these 
operations. If these single operation models could 
not cover all of the requests and queries in a 
session, then this would indicate a possible 
intrusion. 

 
Interestingly, our blog website built for testing 

purposes shows that, by only modeling nine basic 
operations, it can cover most of the operations that 
appeared in the real captured traffic. For each 
operation (e.g., reading an article), we build the 
model as follows. In one session, we perform only a 
single read operation, and then we obtain the set of 
triggered database queries. Since we cannot ensure 
that each user perform only a single operation 
within each session in real traffic, we use a tool 
called Selenium [15] to separately generate training 
traffic for each operation. In each session, the tool 
performs only one basic operation. When we repeat 
the operation multiple times using the tool, we can 
easily substitute the different parameter values that 
we want to test (in this case, reading different 
articles). Finally, we obtain many sets of queries 
from one session and assemble them to obtain the 
set of all possible queries resulting from this single 
operation. 

 
By placing each rm, or the set of related requests 

Rm, in different sessions with many different 
possible inputs, we obtain as many candidate query 
sets fQn, Qp, Qq ...g as possible. We then establish 
one operation mapping model Rm ! Qm (Qm = Qn 
[ Qp [ Qq [ :::), wherein Rm is the set of the web 
requests for that single operation and Qm includes 
the possible queries triggered by that operation. 
Notice that this mapping model includes both 
deterministic and non-deterministic mappings and 

the set EQS is still used to hold static file requests. 
As we are unable to enumerate all the possible 
inputs of a single operation (particularly write type 
operations), the model may incur false positives. 

 
Detection for Dynamic Websites 
Once we build the separate single operation 

models, they can be used to detect abnormal 
sessions. In the testing phase, traffic captured in 
each session is compared with the model. We also 
iterate each distinct web request in the session. For 
each request, we determine all of the operation 
models that this request belongs to, since one 
request may now appear in several models. We then 
take the entire corresponding query sets in these 
models to form the set CQS. For the testing session 
i, the set of DB queries Qi should be a subset of the 
CQS. Otherwise, we would find some unmatched 
queries. For the web requests in Ri, each should 
either match at least one request in the operation 
model or be in the set EQS. If any unmatched web 
request remains, this indicates that the session has 
violated the mapping model. 

 
For example, consider the model of two single 

operations such as Reading an article and Writing 
an Article. The mapping models are READ! RQ 
and WRITE! WQ, and we use them to test a given 
session i. For all the requests in the session, we then 
find that each of them either belongs to request set 
READ or W RIT E. (You can ignore set EQS here). 
This means that there are only two basic operations 
in the session, though they may appear as any of 
their permutations. Therefore, the query set Qi 
should be a subset of RQ [W Q, which is CQS. 
Otherwise, queries exist in this session that does not 
belong to either of the operations, which is 
inconsistent with the web requests and indicates a 
possible intrusion. Similarly, if there are web 
requests in the session that belong to none of the 
operation models, then it either means that our 
models haven’t covered this type of operation or 
that this is an abnormal web request. According to 
our algorithm, we will identify such sessions as 
suspicious so that we may have false positives in 
our detections. We discuss the false positive 
detection rate further in Section V. 
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Fig 2: The overall architecture of our prototype 
 
PERFORMANCE EVALUATION 
We implemented a prototype of Double Guard 

using a web server with a back-end DB. We also set 
up two testing websites, one static and the other 
dynamic. To evaluate the detection results for our 
system, we analyzed four classes of attacks, as 
discussed in Section III, and measured the false 
positive rate for each of the two websites. 

 
A. Implementation 
In our prototype, we chose to assign each user 

session into a different container; however this was 
a design decision. For instance, we can assign a 
new container per each new IP address of the client. 
In our implementation, containers were recycled 
based on events or when sessions time out. We 
were able to use the same session tracking 
mechanisms as implemented by the Apache server 
(cookies, mod user track, etc) because lightweight 
virtualization containers do not im-pose high 
memory and storage overhead. Thus, we could 
maintain a large number of parallel-running Apache 
instances similar to the Apache threads that the 
server would maintain in the scenario without 
containers. If a session timed out, the Apache 
instance was terminated along with its container. In 
our prototype implementation, we used a 60-minute 
timeout due to resource constraints of our test 
server. However, this was not a limitation and could 
be removed for a production environment where 
long-running processes are required. Fig-ure 9 
depicts the architecture and session assignment of 
our prototype, where the host web server works as a 
dispatcher. 

 
Initially, we deployed a static testing website 

using the Joomla Content Management System. In 
this static web-site, updates can only be made via 
the back-end management interface. This was 
deployed as part of our center website in production 
environment and served 52 unique web pages. For 
our analysis, we collected real traffic to this website 
for more than two weeks and obtained 1172 user 
sessions. 

 
To test our system in a dynamic website scenario, 

we set up a dynamic Blog using the Word press 
blogging software. In our deployment, site visitors 
were allowed to read, post, and comment on 
articles. All models for the received front-end and 
back-end traffic were generated using this data. 

 
Fig 3: Performance evaluation using http load. 

The overhead is between 10.3% to 26.2% 
 
We discuss performance overhead, which is 

common for both static and dynamic models, in the 
following section. In our analysis, we did not take 
into consideration the potential for caching 
expensive requests to further reduce the end-to-end 
latency; this we left for future study. 

 
B. Container Overhead 
One of the primary concerns for a security system 

is its performance overhead in terms of latency. In 
our case, even though the containers can start 
within seconds, generating a container on-the-fly to 
serve a new session will increase the response time 
heavily. To alleviate this, we created a pool of web 
server containers for the forthcoming sessions akin 
to what Apache does with its threads. As sessions 
continued to grow, our system dynamically 
instantiated new containers. Upon completion of a 
session, we recycled these containers by reverting 
them to their initial clean states. 

 
The overhead of the server with container 

architecture was measured using a machine with the 
following specifications: 4 cores 2.8GHz CPU, 
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8GB memory, 100MB/s NIC card, and CentOS 5.3 
as the server OS. Our container template used 
Ubuntu 8.0.4 with Apache 2.2.8, and PHP 5.2.4. 
The size of the template was about 160MB, and 
Mysql was configured to run on the host machine. 
Our experiment showed that it takes only a few 
seconds for a container to start up, and our server 
can run up to 250 web server instances to form the 
pool of containers. Beyond this point, we observed 
a dramatic performance downgrade of the web 
server instances. 

 
We evaluated the overhead of our container-

based server against a vanilla web server. In order 
to measure throughput and response time, we used 
two web server benchmark tools: http load and auto 
bench. The testing website was the dynamic blog 
website, and both vanilla web server and the 
container-based web server connected to the same 
MySQL database server on the host machine. For 
the container-based server, we maintained a pool of 
160 web server instances on the machine. 

 
For the http load evaluation, we used the rate of 5 

(i.e., it emulated 5 concurrent users). We tested 
under the parameters of 100, 200, and 400 total 
fetches, as well as 3 and 10 seconds of fetches. For 
example, in the 100-fetches bench-mark, http load 
fetches the URLs as fast as it can 100 times. 

 
 
Fig 4: Performance evaluation using auto bench. 
 
Similarly, in the 10 seconds benchmark, http load 

fetches the URLs as fast as it can during the last 10 
seconds. We picked 15 major URLs of the website 
and tested them against both servers. Figure 3 
shows our experiment results. 

 
 

The value of fetches per second in the http load 
results is the most important indicator to reflect web 
server throughput performance. From the figure, we 
can observe that the over-head varied from 10.3% 
to 26.2%, under the full working load. When we put 
the parameters at 3 and 10 seconds, the overhead 
was about 23%. 

 
We also tested using auto bench, which is a Perl 

script wrapper around httperf. It can automatically 
compare the performance of two websites. We 
tested demanding rate ranging from 10 to 190, 
which means that a series of tests started at 10 
requests per second and increased by 20 requests 
per second until 190 requests per second were being 
requested; any responses that took longer than 10 
seconds to arrive were counted as errors. We 
compared the actual requests rates and the replay 
rates for both servers. 

 
Figure 4 shows that when the rate was less than 

110 concurrent sessions per second, both servers 
could handle re-quests fairly well. Beyond that 
point, the rates in the container-based server 
showed a drop: for 150 sessions per second, the 
maximum overhead reflected in the reply rate was 
around 21% (rate of 130). Notice that 21% was the 
worst case scenario for this experiment, which is 
fairly similar to 26.2% in the http load experiment. 
When the server was not overloaded, and for our 
server this was represented by a rate of less than 
110 concurrent sessions per second, the 
performance overhead was negligible. 

 
Figure 5 depicts the time needed for starting a 

container. As we opened 50 containers in a row, the 
average time was about 4.2 seconds. 

 
C. Static website model in training phase 
For the static website, we used the algorithm in 

Section IV-B to build the mapping model, and we 
found that only the Deterministic Mapping and the 
Empty Query Set Mapping patterns appear in the 
training sessions. We expected that the No Matched 
Request pattern would appear if the web application 
had a cron job that contacts back-end database



 
 

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)              

 
ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-6, ISSUE-3, 2019 

56 

 
 
Fig 5: Time for starting a new container 
 

 
 
Fig 6: False Positives vs Training Time in Static 

Website. 
 
Server; however, our testing website did not have 
such a cron job. We first collected 338 real user 
sessions for a training dataset before making the 
website public so that there was no attack during 
the training phase. 

 
We used part of the sessions to train the model 

and all the remaining sessions to test it. For each 
number on the x-axis of Figure 6, we randomly 
picked the number of sessions from the overall 
training sessions to build the model using the 
algorithm, and we used the built model to test the 
remaining sessions. We repeated each number 20 
times and obtained the average false positive rate 
(since there was no attack in the training dataset). 
Figure 6 shows the training process. As the number 
of sessions used to build the model increased, the 
false positive rate decreased (i.e., the model became 
more accurate). From the same figure, we can 
observe that after taking 35 sessions, the false 
positive rate decreased and stayed at 0. This implies 
that for our testing static website, 35 sessions for 

training would be sufficient to correctly build the 
entire model. Based on this training process 
accuracy graph, we can determine a proper time to 
stop the training. 

 
D. Dynamic modeling detection rates 
We also conducted model building experiments 

for the dynamic blog website. We obtained 329 real 
user traffic sessions from the blog under daily 
workloads. During this 7-day phase, we made our 
website available only to internal users to ensure 
that no attacks would occur. We then generated 20 
attack traffic sessions mixed with these legitimate 
sessions, and the mixed traffic was used for 
detection. 

 
The model building for a dynamic website is 

different from that for a static one. We first 
manually listed 9 common operations of the 
website, which are presented in Table I. To build a 
model for each operation, we used the automatic 
tool Selenium to generate traffic. In each session, 
we put only a single operation, which we iterated 
50 times with different values in the parameters. 
Finally, as described in Section IV-D, we obtained 
separate models for each single operation. We then 
took the built models and tested them against all 
349 user sessions to evaluate the detection 
performance. Figure 7 shows the ROC curves for 
the testing results. We built our models with 
different numbers of operations, and each point on 
the curves indicates a different Threshold value. 
The threshold value is defined as the number of 
HTTP requests or SQL queries in a session that are 
not matched with the normality model. We varied 
the threshold value from 0 to 30 during the 
detection. As the ROC curves depict, we could 
always achieve a 100% True Positive Rate when 
doing strict detection (threshold of 0) against 
attacks in our threat model. With a more accurate 
model, we can reach 100% sensitivity with a lower 
False Positive rate. The nature of False Positives 
comes from the fact that our manually extracted 
basic operations are not sufficient to cover all 
legitimate user behaviors. In figure 14, if we model 
9 basic operations, we can reach 100% Sensitivity 
with 6% False Positive rate. In the case of 23 basic 
operations, we achieve the False Positive rate of 
0.6%. This is part of the learning process illustrated 
in this paper, by extending the learning step to 
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include more operations we can create a more 
robust model and further reduce the false positives. 
 

E. Attack Detection 
Once the model is built, it can be used to detect 

malicious sessions. For our static website testing, 
we used the production website, which has regular 
visits of around 50-100 sessions per day. We 
collected regular traffic for this production site, 
which totaled 1172 sessions. 

 
For the testing phase, we used the attack tools 

listed in Table II to manually launch attacks against 
the testing website, and we mixed these attack 
sessions with the normal traffic obtained during the 
training phase. We used the sqlmap, which is an 
automatic tool that can generate SQL injection 
attacks. Nikto, a web server scanner tool that 
performs

 
 
Fig 7: ROC curves for dynamic models. 

 
Comprehensive tests and Metasploit were used to 
generate a number of web server-aimed http attacks 
(i.e., a hijack future session attack). We performed 
the same attacks on both Double Guard and a 
classic 3-tier architecture with a network IDS at the 
web server side and a database IDS at the database 
side. As there is no popular anomaly-based open 
source network IDS available, we used Snort as the 
network IDS in front of the web server, and we 
used GreenSQL as the database IDS. For Snort 
IDS, we downloaded and enabled all of the default 
rules from its official website. We put GreenSQL 
into database firewall mode so that it would 
automatically whitelist all queries during the 

learning mode and block all unknown queries 
during the detection mode. Table II shows the 
experiment results where Double Guard was able to 
detect most of the attacks and there were 0 false 
positives in our static website testing. 

Furthermore, we performed the same test for the 
dynamic blog website. In addition to the real traffic 
data that we captured for plotting the ROC curves, 
we also generated 1000 artificial traffic sessions 
using Selenium and mixed the attack sessions 
together with all of them. As expected, the models 
for the dynamic website could also identify all of 
the same attack sessions as the static case. In the 
following section, we will discuss the experiment 
results in Table II in more detail based on these four 
attack scenarios in Section III-C. 

 
Privilege Escalation Attack: For Privilege 

Escalation Attacks, according to our previous 
discussion, the attacker visits the website as a 
normal user aiming to compromise the web server 
process or exploit vulnerabilities to bypass 
authentication. At that point, the attacker issues a 
set of privileged (e.g., admin-level) DB queries to 
retrieve sensitive information. We log and process 
both legitimate web requests and database queries 
in the session traffic, but there are no mappings 
among them. IDSs working at either end can hardly 
detect this attack since the traffic they capture 
appears to be legitimate. However, Double Guard 
separates the traffic by sessions. If it is a user 
session, then the requests and queries should all 
belong to normal users and match structurally. 
Using the mapping model that we created during 
the training phase, Double Guard can capture the 
unmatched cases. 
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Word Press 2.3.1 had known privilege escalation 
vulnerability. As described in, there was a 
vulnerable check “if (strpos($ SERVER[‘PHP 
SELF’], ‘wp-admin/’) !== false ) $this->is admin = 
true;” that used the PHP str-pos() function to check 
whether the $ SERVER[‘PHP SELF’] global 
variable contained the string “wp-admin/”. If the 
strpos() function found the “wp-admin/” string 
within the 

 
SERVER[‘PHP SELF’] variable, it would return 

TRUE, which would result in the setting of the “is 
admin” value to true. This ultimately granted the 
user administrative rights to certain portions of the 
web application. The vulnerable code was corrected 
to “if (is admin ()) $this->is admin = true;” in a 
later version, which added a function to determine 
whether the user has administrative privilege. With 
the vulnerable code, an unauthorized user could 
input a forged URL like 
“http://www.myblog.com/index.php/wp-admin/” so 
as to set the value of variable $this->is admin to 
TRUE. This would allow the unauthorized user to 
access future, draft, or pending posts that are 
administrator-level information. 

 
According to our experimental results, Double 

Guard is able to identify this class of attacks 
because the captured administrative queries do not 
match any captured HTTP re-quest. In addition, the 
crafted URLs also violate the mapping model of 
Double Guard, triggering an alert. In contrast, Snort 
fails to generate any alert upon this type of attack, 
as does GreenSQL. There are other privilege 
escalation vulnerabilities, such as the ones listed in 
NVD, which prevent both a network IDS like Snort 
or a database IDS from detecting attacks against 
these vulnerabilities. However, by looking at the 
mapping relationship between web requests and 
database queries, Double Guard is effective at 
capturing such attacks. 

 
Fig 8: A trained mapping from web request to 

database queries 
 
Hijack Future Session Attack (Web Server aimed 

attack): Out of the four classes of attacks we 
discuss, session hijacking is the most common, as 
there are many examples that exploit the 
vulnerabilities of Apache, IIS, PHP, ASP, and cgi, 
to name a few. Most of these attacks manipulate the 
HTTP requests to take over the web server. We first 
ran Nikto. As shown in our results, both Snort and 
Double Guard detected the malicious attempts from 
Nikto. As a second tool, we used Metasploit loaded 
with various HTTP based exploits. This time, Snort 
missed most of these attack attempts, which 
indicates that Snort rules do not have such 
signatures. However, Double-Guard was able to 
detect these attack sessions. Here, we point out that 
most of these attacks are unsuccessful, and Double-
Guard captured these attacks mainly because of the 
abnormal HTTP requests. Double Guard can 
generate two classes of alerts. One class of alerts is 
generated by sessions whose traffic does not match 
the mapping model with abnormal database queries. 
The second class of alerts is triggered by sessions 
whose traffic violates the mapping model but only 
in regards to abnormal HTTP requests; there is no 
resulting database query. Most unsuccessful attacks, 
including 404 errors with no resulting database 
query, will trigger the second type of alerts. When 
the number of alerts becomes overwhelming, users 
can choose to filter the second type of alerts 
because it does not have any impact on the back-
end database. Last, GreenSQL cannot detect these 
attacks. 

 
Double Guard is not designed to detect attacks 

that exploit vulnerabilities of the input validation of 
HTTP requests. We argue that, if there is no DB 
query, this class of attacks cannot harm other 
sessions through the web server layer because of 
the isolation provided by the containers. However, 
as we pointed out in Section III-D, XSS cannot be 
detected nor mitigated by Double Guard since the 
session hijacking does not take place at the isolated 
web server layer. 

 
Injection Attack: Here we describe how our 

approach can detect the SQL injection attacks. To 
illustrate with an ex-ample, we wrote a simple PHP 
login page that was vulnerable to SQL injection 
attack. As we used a legitimate username and 
password to successfully log in, we could include 
the HTTP request in the second line of Figure 8. 
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We normalized the value of ‘admin’ and 
‘123456’, and repeated the legitimate login process 
a few times during the training phase. The mapping 
model that was generated is shown in Figure 8 (S 
stands for a string value), where the generalized 
HTTP request structure maps to the following SQL 
queries. After the training phase, we launched an 
SQL injection attack that is shown in Figure 9. Note 
that the attacker was not required to know the user 
name and password because he/she could use an 
arbitrary username the password 1’ or ’1=1, which 
would be evaluated as true. 

 
The HTTP request from the SQL injection 

attacker would look like the second line in Figure 9. 
The parameter shown 

 
 
Fig 9: The resulting queries of SQL injection 

attack 
 
in the box is the injected content. After 

normalizing all of the values in this HTTP request, 
we had the same HTTP request as the one in Figure 
8. However, the database queries we received in 
Figure 9 (shown in box) do not match the 
deterministic mapping we obtained during our 
training phase. 

 
In another experiment, we used sqlmap to attack 

the websites. This tool tried out all possible SQL 
injection combinations as a URL and generated 
numerous abnormal queries that were detected by 
DoubleGuard. GreenSQL was also effective at 
detecting these attacks, which shows its ability to 
detect SQL injection attacks. Regarding Snort, 
although it is possible to write user-defined rules to 
detect SQL injec-tion attack attempts, our 
experiments did not result in Snort reporting any 
SQL injection alerts. 

 
SQL injection attacks can be mitigated by input 

valida-tion. However, SQL injection can still be 
successful because attackers usually exploit the 

vulnerability of incorrect input validation 
implementation, often caused by inexperienced or 
careless programmers or imprecise input model 
definitions. We establish the mappings between 
HTTP requests and database queries, clearly 
defining which requests should trigger which 
queries. For an SQL injection attack to be 
successful, it must change the structure (or the 
semantics) of the query, which our approach can 
readily detect. 

 
Direct DB attack: If any attacker launches this 

type of attack, it will easily be identified by our 
approach. First of all, according to our mapping 
model, DB queries will not have any matching web 
requests during this type of attack. On the other 
hand, as this traffic will not go through any 
containers, it will be captured as it appears to differ 
from the legitimate traffic that goes through the 
containers. In our experiments, we generated 
queries and sent them to the databases without 
using the web server containers. Double Guard 
readily captured these queries. Snort and GreenSQL 
did not report alerts for this attack. 

 
VI. CONCLUSION 
We presented an intrusion detection system that 

builds models of normal behavior for multi-tiered 
web applications from both front-end web (HTTP) 
requests and back-end database (SQL) queries. 
Unlike previous approaches that correlated or 
summarized alerts generated by independent IDSes, 
Double Guard forms container-based IDS with 
multiple input streams to produce alerts. Such 
correlation of different data streams provides a 
better characterization of the system for anomaly 
detection because the intrusion sensor has a more 
precise normality model that detects a wider range 
of threats. We achieved this by isolating the flow of 
information from each web server session with a 
lightweight virtualization. Furthermore, we 
quantified the detection accuracy of our approach 
when we attempted to model static and dynamic 
web requests with the back-end file system and 
database queries. For static websites, we built a 
well-correlated model, which our experiments 
proved to be effective at detecting different types of 
attacks. Moreover, we showed that this held true for 
dynamic requests where both retrieval of 
information and updates to the back-end database 
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occur using the web-server front end. When we 
deployed our prototype on a system that employed 
Apache web server, a blog application and a 
MySQL back-end, DoubleGuard was able to 
identify a wide range of attacks with minimal false 
positives. As expected, the number of false 
positives depended on the size and coverage of the 
training sessions we used. Finally, for dynamic web 
applications, we reduced the false positives to 
0.6%. 
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