

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-6, ISSUE-6, 2019

DOI: 10.21276/ijcesr.2019.6.6.25
150

EFFICIENT TECHNIQUE FOR SIMULATING MULTIPLE

LAYERS OF SOFT TISSUES USING CUDA BASED GPU
Jayasudha.K1, Mohan.G.Kabadi2

1Visvesvaraya Technological University , 2Presidency University
jayanataraja@gmail.com1, mohankg@presidencyuniversity.in2

Abstract
With the introduction of VR(Virtual Reality)
based simulators, surgeons keep learning
these procedures that are different from
traditional surgery procedures. In fact VR
environments are promising medium to carry
out training and practicing surgery
techniques efficiently. This paper investigates
the key component of simulation of multiple
layers of 3D soft tissues of human skin. CUDA
based GPU computing is adopted to speed up
the simulation performance. The parallel
computation is achieved using necessary data
structures and algorithms. The performance
evaluation of the model is done using
vtkPython and CUDA programming
language implementations. The comparative
analysis of the models performance shows
that there is a significant increase in speed up
at a fraction of the cost with GPU equivalent
to ten times the traditional CPU cores.
Index Terms: dermis, epidermis, mesh, soft
tissues, subcutaneous.

I. INTRODUCTION
In recent years, the real time performance of a
mesh model in surgical simulation applications
requires costly algorithms. To increase the speed
ability of such algorithms, many application
developers explore parallelization techniques
described for a mesh model with large number of
nodes. GPU architecture is the newest generation
architecture that eases the programmer with
increased generality by providing tremendous
memory bandwidth and computational power.
This paper describes the comparative analysis of
the multiple layers of soft tissue models
performance used in virtual surgery applications

II. RELATED WORK
This paper presents few accounts of work done
on GPU parallel computations previously. Many
researchers have performed analyses on this area
to gain more knowledge with different
perspectives. Here are some of the related works
presented in the field of parallelization.

A. Finite Element Modeling
Nonlinear finite element equations comprise of
intense arithmetic computations makes it
suitable for implementations on GPU with
parallel computing platform. Taylor et al.[1][2]
explains GPU scheme for FE (Finite Element)
equations to achieve speed up gain for up to
16000 tetrahedral elements. Author Joldes et
al.[3] uses both hexahedral and tetrahedral
elements on CUDA based GPU for real time
nonlinear FE computations to neurosurgical
simulation, whereas the same author in paper[4]
compares several approaches with different
element types for FE algorithms on GPU using
CUDA. Author Oldfield et al.[5] gives detail
description of deep needle insertions by FEM
into a soft tissue phantom. Comas et al.[6]
describes simulation of cataract surgery model
based on algorithm using GPU implementation
and SOFA framework based on CUDA.
Huthwaite et al.[7] explains partitioning the
mesh based on arrangement of nodes,
implemented by accelerated FE algorithm on
GPU. Mafi and sirouspour [8] explains
simulation of large deformations and strains for
dynamic nonlinear deformation analysis using
GPU based implementation of FEM equations.
Author Johnsen et al.[9] describes soft tissue
simulation capabilities into biomedical
applications using niftysim(an open source FE
toolkit) based on GPU.

mailto:jayanataraja@gmail.com
mailto:mohankg@presidencyuniversity.in

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-6, ISSUE-6, 2019

DOI: 10.21276/ijcesr.2019.6.6.25
151

B. Haptic feedback forces
Haptic Feedback Force is a simulator, although
virtual makes user to feel as if actual forces are
exerted by the organs on virtual tools. Author De
Pascale et al.[10] describes real time haptic
rendering of complex objects deformed through
multiple contacts where as author Altomonte et
al.[11] explains the same using mass-spring
model. Author Courtecuisse H et al. in paper[12]
explains deformation with cutting using haptics
based on corotational FEM formulation where as
author Zerbato D et al. in paper[13] explains the
same by taking into account the real tissue
properties.

C. Ultrasound Simulations
Ultrasound Simulations are a framework of
virtual reality based simulators. This stitches
together the ultrasound volumes with different
scan angles to generate ultrasound panorama.
Kutter.O et al. in paper[14] presents ultrasound
simulation and visualization in real time using
ray based method. Reichl.T et al. in paper[15]
explains simulation of ultrasound reflection,
shadowing artifacts, speckle noise and radial
image blurring. Rosenzweig. S et al. in paper
[16] proposes ultrasonic research systems in
cubic spline interpolation and Loupas 2D
autocorrelation for displacement estimation.
Although the above mentioned papers uses
standard techniques like FEM (Finite Element
Modeling), haptic feedback, ultrasound
simulations etc, but does not propose
computations of hybrid model comprising of
triangular and tetrahedral meshes. The next
section describes the methodology used to build
the hybrid model.

III. METHOD
According to Jean Christophe[17] human skin

is made up of three layers: epidermis, dermis and
subcutaneous layers as shown in fig.1. Epidermis
is thin and soft layer with hair follicles or hair
shaft. Dermis is the center most layer consisting
of capillaries, sweat glands, touch receptors etc.
Dermis layer is quite thick and it supports
epidermis. Subcutaneous is bottom most layer
connected to muscles and bones. From fig.1 it is
clear that human skin consists of multiple layers.
The thickness and behavior of each layer is
different from each other. Hence it is required to
develop a prototype of multiple layers of soft

tissue model that mimics human skin. This is
achieved using hybrid mesh model based on
Delaunay triangulation concept and marching
cube concept applied to cube data structures.

Fig.1. Human skin structure

The cube data structures of Delaunay

triangulation concept contain vertex-list,
edge-list and triangle-list shown in fig.2. The
Delaunay cube algorithm is built based on this
concept shown in fig.3. The cube data structures
of marching cube concept contain vertex-list,
edge-list, face-list and tetra-list as shown in fig.4.
The marching cube algorithm is built based on
this concept shown in fig.5. the next section
describes the comparative study to analyze the
model implementation techniques using
VTKpython and CUDA programming
languages.

Fig.2. Delaunay Triangulation Concept

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-6, ISSUE-6, 2019

DOI: 10.21276/ijcesr.2019.6.6.25
152

Fig.3. Delaunay cube algorithm

Fig.4. Marching Cube Concept

Fig.5. Marching cube algorithm

IV. VTKPYTHON IMPLEMENTATION
The Visualization Toolkit (VTK) is an open

source, freely available software system for 3D
computer graphics, image processing, and
visualization. Although VTK is freely available,
commercial support is available from Kit ware,
Inc. [18]. VTK includes a C++ class library, and

several interpreted interface layers including
Tcl/ITk, Java, and Python. VTK has been
implemented on nearly every Unix-based
platform, PC's (Windows 95/98/NT/2000/XP)
and Mac OSX Jaguar and later. VTK supports a
wide variety of visualization algorithms
including scalar, vector, tensor, texture, and
volumetric methods and advanced modeling
techniques like implicit modeling, polygon
reduction, mesh smoothing, cutting, contouring,
and Delaunay triangulation. The design and
implementation of the library has been strongly
influenced by object-oriented principles.

In VTK, applications can be written directly in
C++, Tcl, Java, or Python. Python is a popular
programming and scripting language with
object-oriented programming concepts. Python
supports multithreading and multiprocessing. It
also provides GUI (Graphical User Interface)
functionality. And therefore VTKpyhton is used
for implementation. Fig.6. depicts the
VTKPython architecture.

Fig.6. VTKPython Architecture

VTK compatible with python supports a wide

variety of visualization algorithms including
scalar, vector, tensor, texture, and volumetric
methods and advanced modeling techniques like
implicit modeling, polygon reduction, mesh
smoothing, cutting, contouring, and Delaunay
triangulation. The sample code for VTKpython
is shown below:

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-6, ISSUE-6, 2019

DOI: 10.21276/ijcesr.2019.6.6.25
153

The above code shows a simple example of
adding an element to the array, till required size
of array (N). It is normal programming function
where array elements are incremented
sequentially.

V. CUDA IMPLEMENTATION
The simulation performance of multiple layers

of soft tissues is evaluated using NVIDIA’s
CUDA (Compute Unified Device Architecture)
based on GPU. Parallel computing in CUDA
takes place corresponding to the process flow
steps shown in fig.7.

Fig.7.Parallel computing in CUDA

The above figure shows parallel computation

in CUDA consists of the following steps:
1) The data to be processed is copied from

CPU (main memory) to GPU memory.
2) CPU instructs GPU to perform parallel

processing
3) Parallel execution takes place in GPU

memory
4) Results are copied from GPU memory to

CPU.
The key performance of CUDA[19] is that it
utilizes large number of cores and hides global
memory latency to perform massive
multithreading. The optimization strategy for
parallelization of algorithms using CUDA
manages the following:

• Number of threads for multiprocessor
• Number of registers
• On-chip memory used per thread
• Global memory bandwidth

The sample code for CUDA parallel

computation is shown below:

The above code shows the same example of

adding an element to the array using CUDA
parallel programming technique. CUDA
memory contains many grids in which each grid
is a collection of blocks and in turn each block is
a collection of threads. The terms used in the
above code are as follows:
 __global__: syntax of routine executed on the
GPU.
threadIdx : thread index within the block
blockIdx : block index within the grid
blockDim : dimension of block in threads
Dim3 :Three dimension (x,y,z)
dimBlock : Number of threads in block (1D or
2D or 3D)
dimGrid : Number of blocks in Grid (1D or
2D)
<<<…>>> : syntax for kernel calls

All the threads synchronize the execution
parallel. Each thread will have an Id so as to
compute memory address and take control
decisions. However the differences between
CUDA and VTKpython are shown in table I with
respect to multithreading aspects. The next
section debriefs the experimental results
obtained.

Table I. Comparison of multithreading concepts
Sl.no CUDA VTKPython

1
Parallel execution
of threads

Sequential
execution of
threads

2
Threads are light
weighted

Threads are heavy
weight

3
Instant switching
of threads

No switching of
threads

4
Uses 100's of
threads to achieve

Uses few threads
to achieve

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-6, ISSUE-6, 2019

DOI: 10.21276/ijcesr.2019.6.6.25
154

efficiency efficiency

5

Drastic reduction
in memory
bandwidth

No reduction in
memory
bandwidth

6
Uses shared
memory concept

No shared
memory concept

7

Thread
co-operation is a
powerful feature

Thread
co-operation is
less

8
Achieves fine
grain parallelism

Achieves coarse
grain parallelism

VI. RESULTS

The results presented are based on cubical data
structures applied to hybrid mesh model. It is
called hybrid mesh model because the epidermal
layer is thin, hence it is made up of triangulated
mesh model using Delaunay triangulation
concept. Dermis layer is thick and 10 times more
than epidermis[20], hence it is made up of
tetrahedral mesh model using marching cube
concept. The subcutaneous layer is also thick,
but its thickness differs in different parts of the
body. Hence it is also made up of tetrahedral
mesh as they are dense and thick. Since the
epidermis layer is thin, it modeled as single
horizontal layer with twenty adjacent cubes
placing next to each other. The dermis layer is
quite thick and modeled as double horizontal
layers with twenty adjacent cubes placing next to
each other. The subcutaneous layer is not only
thick but also hard as it is connected to muscles
and bones. Therefore it is also modeled as double
horizontal layers with twenty adjacent cubes
placing next to each other. The visual appearance
of all the three layers is shown in fig.8(a) and 8(b)
in solid and wireframe models. The model
represented in which all surfaces meet is called
solid model. The model represented in which it
contains lines and curves is called wireframe
model.

The simulation results are analyzed for parallel
computations performed on hybrid mesh model
using VTKpython and CUDA with the following
computing environments:
VTKPython computing environment:
Intel®core (TM) i3 CPU M380 @2.53Ghz
VTK 6.1.0 Python 64-bit(Intel) on windows7
Python compiler
CUDA computing environment:

Intel quad core Xeon processor (3.7 GHz),
2GB NVIDIA
Quadro K2000

Fig.8(a). Multilayered skin in solid model

(20X 1X 21)

Fig.8(b). Multilayered skin in wireframe

model (20X 1X 21)

Fig.9(a). Multilayered skin in solid model

(40X 1X 21)

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-6, ISSUE-6, 2019

DOI: 10.21276/ijcesr.2019.6.6.25
155

Fig.9(b). Multilayered skin in wireframe

model (40X 1X 21)

Fig.10(a). Multilayered skin in solid model

(100X 1X 21)

Fig.10(b). Multilayered skin in wireframe

model (100X 1X 21)

Initially the hybrid mesh model’s size is
20X1X21 by length, width and breadth as shown
in fig.8(a) and (b). That means 20 cubes are
placed horizontally to form the length of the
mesh applicable to all the three layers. Here 1
represents the width of the mesh. Similarly 21
represents the breadth of the mesh including one
layer of epidermis, 10 layers of dermis and 10
more layers of subcutaneous. Mesh size is

gradually scaled horizontally to 40, 60, 100 etc
up to 500 as shown in fig.9(a) and (b), fig.10(a)
and (b) to study the models performance.

Table II. Execution time comparisons

Mesh Size
(lXWXd)

Execution
time(ms) using
VTK Python

Execution
time(ms)

using
NVIDIA's

CUDA
20X1X21 0.4374 0.162
40X1X21 1.0202 0.324
60X1X21 1.2946 0.486
100X1X21 2.1648 0.81
140X1X21 3.2816 1.134
200X1X21 5.3322 1.62
300X1X21 9.1937 2.43
400X1X21 12.0256 3.24
500X1X21 15.1543 4.05

The comparative analysis of the multilayered
soft tissue model is done using C and python
programming languages [21]. This paper is an
extended version in which it incorporates hybrid
soft tissue model and also to increase the speed
of execution at a faster rate CUDA based GPU is
employed. The hybrid model’s corresponding
execution timings are noted down as shown in
table II. The execution time is recorded in
milliseconds. The simulation performance of the
model is analyzed and compared using
VTKpython and CUDA. It is observed that the
simulation performance is enhanced using
CUDA than VTKpython. This is because of
CUDA consists of dedicated parallel
computation framework. The same performance
is presented using graphical chart shown in
fig.11. It is understood from the graph that for
smaller number of mesh size up to 200, there is
no drastic variation in the performance. But as
the mesh size increases say up to 500, the
performance increases tremendously. This is
because when the mesh size is small, the time
taken for data processing is also small. As the
mesh size increases, the time taken for data
processing is also increases. From the graph it is
clearly visible that NVIDIA’s CUDA takes less
execution time compared to VTKpython. The
reason behind this is that CUDA GPU
architecture utilizes data parallel co-processors
that allows efficient mapping of computation to
graphics hardware.

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-6, ISSUE-6, 2019

DOI: 10.21276/ijcesr.2019.6.6.25
156

Fig.11. Comparison of execution times

VII. CONCLUSION
The presented framework simulates

multilayered soft tissue model for human skin. It
is the mesh model that mimics the human skin. It
is modeled in an hybrid manner consisting of
triangular and tetrahedral meshes. Performances
of the mesh model are analyzed using
VTKpython and CUDA. It can be inferred from
the graph that CUDA enabled GPU enhances the
efficiency of the model compared to VTKpython
in terms of reducing the time consumption of
models execution in the field of parallelization. It
can be concluded that with CUDA
implementation mesh can be generated easily
with more number of elements, represent better
geometry and also produces more accurate
results.

 REFERENCES

[1] Taylor ZA, Cheng M, Ourselin S. Real-time
nonlinear finite element analysis for surgical
simulation using graphics processing units.
In International Conference on Medical
Image Computing and Computer-Assisted
Intervention 2007 Oct 29 (pp. 701-708).
Springer, Berlin, Heidelberg.

[2] Taylor ZA, Cheng M, Ourselin S.
High-speed nonlinear finite element analysis
for surgical simulation using graphics
processing units. IEEE transactions on
medical imaging. 2008 May;27(5):650-63.

[3] Joldes GR, Wittek A, Miller K. Real-time
nonlinear finite element computations on
GPU–Application to neurosurgical
simulation. Computer methods in applied
mechanics and engineering. 2010 Dec
15;199(49-52):3305-14.

[4] Joldes GR, Wittek A, Miller K. Real-time
nonlinear finite element computations on
GPU: handling of different element types. In
Computational biomechanics for medicine
2011 (pp. 73-80). Springer, New York, NY.

[5] Oldfield M, Dini D, Giordano G, Rodriguez
y Baena F. Detailed finite element modeling
of deep needle insertions into a soft tissue
phantom using a cohesive approach.
Computer methods in biomechanics and
biomedical engineering. 2013 May
1;16(5):530-43.

[6] Comas O, Taylor ZA, Allard J, Ourselin S,
Cotin S, Passenger J. Efficient nonlinear
FEM for soft tissue modeling and its GPU
implementation within the open source
framework SOFA. In International
Symposium on Biomedical Simulation 2008
Jul 7 (pp. 28-39). Springer, Berlin,
Heidelberg.

[7] Huthwaite P. Accelerated finite element
elastodynamic simulations using the GPU.
Journal of Computational Physics. 2014 Jan
15;257:687-707.

[8] Mafi R, Sirouspour S. GPU‐based
acceleration of computations in nonlinear
finite element deformation analysis.
International journal for numerical methods
in biomedical engineering. 2014 Mar
1;30(3):365-81.

[9] Johnsen SF, Taylor ZA, Clarkson MJ,
Hipwell J, Modat M, Eiben B, Han L, Hu Y,
Mertzanidou T, Hawkes DJ, Ourselin S.
NiftySim: A GPU-based nonlinear finite
element package for simulation of soft tissue
biomechanics. International journal of
computer assisted radiology and surgery.
2015 Jul 1;10(7):1077-95.

[10] De Pascale M, De Pascale G, Prattichizzo
D, Barbagli F. A GPU-friendly method for
haptic and graphic rendering of deformable
objects. In Proceedings of Eurohaptics 2004
(Vol. 2004, pp. 44-51).

[11] Altomonte M, Zerbato D, Botturi D,
Fiorini P. Simulation of deformable
environment with haptic feedback on GPU.
In Intelligent Robots and Systems, 2008.
IROS 2008. IEEE/RSJ International
Conference on 2008 Sep 22 (pp. 3959-3964).
IEEE.

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-6, ISSUE-6, 2019

DOI: 10.21276/ijcesr.2019.6.6.25
157

[12] Courtecuisse H, Jung H, Allard J, Duriez
C, Lee DY, Cotin S. GPU-based real-time
soft tissue deformation with cutting and
haptic feedback. Progress in biophysics and
molecular biology. 2010 Dec
1;103(2-3):159-68.

[13] Zerbato D, Baschirotto D, Baschirotto
D, Botturi D, Fiorini P. GPU-based physical
cut in interactive haptic simulations.
International journal of computer assisted
radiology and surgery. 2011 Mar
1;6(2):265-72.

[14] Kutter O, Shams R, Navab N.
Visualization and GPU-accelerated
simulation of medical ultrasound from CT
images. Computer methods and programs in
biomedicine. 2009 Jun 1;94(3):250-66.

[15] Reichl T, Passenger J, Acosta O, Salvado
O. Ultrasound goes GPU: real-time
simulation using CUDA. In Medical Imaging
2009: Visualization, Image-Guided
Procedures, and Modeling 2009 Mar 13
(Vol. 7261, p. 726116). International Society
for Optics and Photonics.

[16] Rosenzweig S, Palmeri M, Nightingale K.
GPU-based real-time small displacement
estimation with ultrasound. IEEE
transactions on ultrasonics, ferroelectrics,
and frequency control. 2011 Feb;58(2).

[17] Jean-Christophe Nebel, “Soft tissue
modelling from 3D scanned data”,
Department of Computing Science,
University of Glasgow, G128QQ, Glasgow,
UK., pp 85-97, 2000.

[18] http://www.vtk.org
[19] http://en.wikipedia.org/wiki/CUDA
[20] Genzer J, Groenewold J. Soft matter with

hard skin: From skin wrinkles to templating
and material characterization. Soft Matter.
2006;2(4):310-23.

[21] Jayasudha.K and Dr.K.G.Mohan,“
Realizing Multilayered Soft Tissue Model
Using Multithreading in Python ”,
International Journal of Engineering and
Technology(IJET), (ISSN 2227-524X,
Volume 7(3.12), pgn0.589-593, Issue 31,
July 2018).

http://www.vtk.org/
http://en.wikipedia.org/wiki/CUDA

	INTRODUCTION
	RELATED WORK
	Finite Element Modeling
	Haptic feedback forces
	Ultrasound Simulations

	METHOD
	VTKPYTHON IMPLEMENTATION
	CUDA IMPLEMENTATION
	RESULTS
	CONCLUSION

