

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-6, ISSUE-6, 2019

DOI: 10.21276/ijcesr.2019.6.6.12
59

IMPLEMENTATION AND VERIFICATION OF RISC

PROCESSOR ON FPGA USING CHIPSCOPE PRO TOOL
1Prof Ruckmani Divakaran, 2Srinivas Babu .N, 3Shashi Kiran .S, 4Byrareddy .H.C

1 Head of Department, Department of Electronics and Communication, Dr. TTIT, KGF,
hod.ece@drttit.edu.in

2 Assistant Professor, Department of Electronics and Communication, Dr. TTIT, KGF,
srinivas.b@drttit.edu.in

3 Assistant Professor, Department of Electronics and Communication, Dr. TTIT, KGF,
shashikiran@drttit.edu.in

4 PG Scholar, M.Tech in Digital Communication and Networking, Dr. TTIT, KGF,
byra22@gmail.com

Abstract
The advanced microprocessors are widely
used for most of the complex systems. A
silicon chip of fingernail-size may exhibit
entire high performance guaranteed
processor, higher cache memory and logic
needed for interfacing with external devices.
Reduced Instruction Set Computing (RISC)
is a CPU (Central Processing Unit) design
mechanism based on the vision in which
exhibits basic instruction set and yields
better performance after comparison with
microprocessor architecture and it has the
capacity to perform the instructions through
microprocessor cycles per instruction. In this
paper, the Cost-effective and efficient RISC
Processor is designed. The RISC Processor
design includes Fetching, decoding, Data and
instruction memory, and Execution units.
The Execution unit contains ALU
(Arthematic and Logical Unit) Operations.
The RISC Processor design is synthesized
and implemented using Xilinx ISE Tool and
simulated using Modelsim6.5f. The
implementation is done by Artix-7 FPGA
device and the physically debugging of the
RISC Processor, and ALU Units are verified
using Chipscope pro tool. The performance
results are analyzed in terms of the Area
(Slices, LUT’s), Timing period, and
Maximum operating frequency. The
comparison of the RISC Processor is made

concerning previous similar architecture
with improvements.
Key words: RISC Processor, ALU Unit,
Execution, Fetching, decoding, Verification,
FPGA

I. INTRODUCTION
The earlier days of the processor design has

witnessed a quest for higher performance in
computer models and architectures. To achieve
significant performance, technology
advantages, better architecture and optimization
in the compiler technology. As per this
technology, the machine performance can be
increased in proportion with the technology
enhancement which can be available for
everyone.

The design of the processor is manufactures
using semiconductor devices, the printed circuit
board (PCB), etc. The operation of any
processor depends on the instructions used in it.
These instructions include the
computation/manipulation of the data values by
using the registers, changing/retrieve the values
of the read/write memory, performing the
relational test among the data values and to
have the control over the program flow.

The design of a processor considers the areas
like: (i) data paths like ‘Arithmetic Logic-Unit
(ALU) and pipelines’, (ii) a control unit which
helps in controlling the data paths, (iii)
considers the register files (memory
components), (iv) clock circuits, (v) library of

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-6, ISSUE-6, 2019

DOI: 10.21276/ijcesr.2019.6.6.12
60

logic gates for logic implementation and (vii)
includes transceiver circuits is represented in
figure 1.

Data Paths Control Units

Memory
Components

Clock
Circuits

Library of
Logic Gates

Transceiver
Circuits

Figure.1 Design areas of processor

The processor's designs for high

performance demanding applications require the
custom designs in above-stated items to get
power dissipation, frequency, etc., while for low
performance demanding applications uses the
less number of items.

The RISC architecture deals with more
precisely their trade-offs and interaction [1].
The working function of instructions in RISC is
simple. Hence, the execution time required for
each installation can be minimized, and a
number of cycles can be narrowed. The
execution time for instruction can be divided
into machine cycles, machine processing, and
operation of instruction sets. The operation of
the instruction can be performed in a pipelined
manner [2, 3].

The pipelined process includes five different
stages, i.e., instruction fetching (IF), Instruction
decoding (ID), execution (EX), memory
accessing (MA) and write back (WB). The
overlapping of different instruction in a
pipelined manner. RISC performs its inherent
parallel execution which is responsible for
performance enhancement than CISC. The
RISC aims to achieve execution of single cycle
per instruction, i.e., CPI = 1.0 with no
interruption where pipelining take place. The
selection of addressing modes and instruction in
RISC can be performed and tailored on the
basis of recently used instruction resulting in
significant execution of RISC pipeline [4, 5].

 The section 2 discuss about the existing
works of RISC Processor and ALU Designs and
Problems finding. The section 3 explains about
the proposed RISC Processor with detailed
descriptions. The results and analysis of the
work is elaborated in section 4. Finally
concludes the overall system with improvements
with future work in section 5.

II. RELATED WORKS
The review of the existing work on RISC

Processor architectures and ALU Units are
described in below session.

The implementation of field programmable
gate array (FPGA) is successively has been
done in 8-bite Reduced instruction set Gal et al.
discussed computer (RISC) [6]. The
introduction of (FPGA) implementation and
working experience of the 8-bit microcontroller
is to provide in this given work. The uses of a
microcontroller are on a big demand in an
industrial application; the primary goal of the
implementation in RISC is to decrease the
number of instruction and produced a smaller
and faster processor.

Nowadays technologies are entered in

human beings dally life and demand for
machine and computer technology is increased
day by day. For the full fill of demand Khazaee
et al. [7] have presented a Java programming
language as Java virtual machine (JVM), but the
given JVM is not enough capacity in speed or
storage. The problem of low speed and memory
overhead is carried out by Tomar et al. [8] in
which discussed the working progress of RISC
with the connecting of the digital signal
processor (DSP) it can perform effectively in
several operations.

 Cernazanu et al. [9] have discussed the
possibility of generating an energy profile of
RISC by the implementation of FPGA. Energy
is consumed by the following of group
instruction like memory access instruction,
arithmetic and logic instruction (ALU),
compare and move instruction; these are the
more energy consumed instruction. The work of
power consumption is carried out in the next
section by Murthy et al. [10] have focused on
the power consumption of the 32-bit RISC core
processor. For solving this more power
consumption problem a DLX (32-bit

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-6, ISSUE-6, 2019

DOI: 10.21276/ijcesr.2019.6.6.12
61

architecture). Power consumption and power
management work are continues in the next
segment, in which Kumar et al.[11] have
focused on the capability of dynamic power
management and to maintain the consumption
proposed a low power embedded system. The
development of 8-bit RISC processor is possible
by the implementation of HDL on the board of
FPGA. Jeemon et al. [12] have presented a
pipeline RISC processor for the improvement of
the performance of the 8-bit RISC processor.
The process of a bit is continued in a change
form of 32-bit, Singh et al. [13] have discussed
on the design of 32-bit re-configurable RISC
processor this processor is based on BETA
(lesson-by-lesson) instruction. The main reason
behind the using of a 32-bit processor is that the
32-bit processor is to provide flexibility and a
great extent to the developer.

Work of the 32-bit processor is carried out

by Dennis et al. [14] have presented an
improvement of the fully synthesizable 32-bit
processor, and it is based on RISC-V. The
primary goal behind this proposed technique is
to make a low cost embedded device and also
completed the verification and assembling,
testing all are at a limited cost. Rohit et al. [15]
have presented a low power RISC processor
with the using of stalling and forwarding
process. A base of the architecture of the RISC
processor is based on million instruction per
second (MIPS) it is a non-interlocked pipeline
method. The work of Venkategowada et al. [16]
have concentrated on the plan of creating a
synthesized shared memory and QUAD-Core
processor and put it on a working path to solve
the problem of processor verification, and
multiprocessor interrupts management. The
primary goal of this given technique is to
improve a framework and a test QUAD-Core
processor on an FPGA board.

 Problem statement:
 Most of the Existing processor designs are
software based and not compactable to real-time
environments. In that, very few are hardware-
based approaches and lacks hardware
complexities and performance metrics in real
time. Most of the Processor designs are ASIC
Based approaches and limited to perform only a
few parameters. Very few processor
verifications are done on real-time

environments and lack optimizations. In order
to verify the hardware designs with real-time
data, it is difficult without using the simulation
testbench. The Unit under Test (UUT) is the
design module is incorporated in the testbench
to verify the designs. But it lacks with
observability and controllability in real time.

 Proposed Solution:
 The proposed RISC Processor overcomes all
the problems and improves processor
performance. The processor Verification is done
quickly by using two intellectual property (IP)
cores. In that, the integrated logic Analyzer
(ILA) improves the observability, and virtual
input-output core (VIO) improves the
controllability of the processor in real-time
verification.

III. PROPOSED RISC PROCESSOR
This section describes about the proposed

RISC Processor and its working functionality.
The RISC Processor components have explained
an overview in the below section:

• Instruction Memory: It is the part of a
control unit that stores the instructions and
will be executed or decoded.

• Instruction Fetch: It is loading
of instruction or piece of data from memory
into a CPU's register. All instructions must
be fetched before they can be executed.

• Instruction Decode: what the instruction has
to do, it has to be decoded. Part of the
decoding method fetches the input-operands.

• Data Register: Data register is an array of
processor-registers in a ‘CPU.' Modern
integrated-circuit based Data register is
usually implemented by fast static ‘RAMs'
with multiple-ports.

• Execute Logic (ALU Design): It is the block
where all the Arthematic and logical
expressions are made based on the Mode.

ALU Design mainly includes Arthematic and
logic operations. The Arthematic operation
includes Addition, subtraction, Multiplication,
division, Modulus, Increment, and decrement
operations. The Logic Operations includes
Logical AND, OR, XOR, NAND, NOR, XNOR,
Right shift, left shift, negation and don't care
operations.

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-6, ISSUE-6, 2019

DOI: 10.21276/ijcesr.2019.6.6.12
62

Instruction
Memory

Execution Unit
(ALU Design)

Decoding Unit

Fetching Unit

Data Register

Outputs

FPGA

Figure 2: Block Diagram of ALU Design for

RISC Processor

 Instruction fetching (IF) unit is used to fetch
the instruction from the instruction memory and
pass to the decoder unit. The fetching unit
mainly contains a program counter (PC) and
instruction memory (IM) unit. The instruction
memory receives PC Output as an input. The
IM unit is having 16 memory locations (ROM),
and each memory location is 16-bit. The PC
Output acts as an address generator to the IM
unit. The IM Unit contains mainly 16 different
values which are stored in 16 memory locations.
 The instruction decoding (ID) unit decodes
the fetched instruction operands. The ID unit
receives the fetching output as a 16-bit input
and decodes into last 4-bit instruction [15:12]
are acts as an operand. Based on the operands,
generates the opcode for ALU unit (alu_in) and
registers (Rdx and Rdy) for data memory. If the
4-bit instruction [15:12] is set to 4’b0000, the
alu_in is set 4’b0000 and Rdx= 4’d0 and
Rdy=4’b0 and If the 4-bit instruction [15:12] is
set to 4’b0001, the alu_in is set 4’b0001 and
Rdx= instruction [7:4] and Rdy= instruction
[3:0] and similarly the decoding process
continue till the last operand (i.e. 15th). The
Data register or Data memory (DM) unit is used
to read and store the user data according to the
instruction operands. The DM Unit has 16
memory locations (a); each is memory location
is 16-bit. The 4-bit Rdx and Rdy are acted as an
address generator and inputs to memory (a) to
read the user data. And store it in 16-bit
registers (Rx and Ry) as an output.

Table 1: Execution (ALU) unit Operations

Sl.No. ALU
Input Operation Output

Function
0 0000 Addition Rx + Ry
1 0001 Subtraction Rx - Ry
2 0010 Multiplication Rx * Ry
3 0011 Division Rx / Ry
4 0100 Modulus Rx % Ry
5 0101 Increment Rx + 1
6 0110 Decrement Rx - 1
7 0111 Bitwise AND Rx & Ry
8 1000 Bitwise OR Rx | Ry
9 1001 Bitwise

Negation
~Rx

10 1010 Bitwise XOR Rx ^ Ry
11 1011 Bitwise

XNOR
Rx ~^ Ry

12 1100 Bitwise
NAND

~(Rx &
Ry)

13 1101 Bitwise NOR ~(Rx | Ry)
14 1110 Logical Shift

Right
Rx >> Ry

15 1111 Logical Shift
Left

Rx << Ry

 The central processing unit of the RISC
Processor is Execution unit, i.e., ALU Unit. It
performs the Arthematic and logic operation
based on the instruction opcode and instruction
registers. The Execution (ALU) contains clock
(Clk), reset (rst), 16-bit registers Rx and Ry as
an input and generates the 32-bit ALU outputs.
Based on the ALU operations, the ALU output
will be generated. The ALU Operations
includes Addition, subtraction, multiplication,
Division, Modulus, Increment, decrement,
Bitwise AND, OR, Negation, XOR, XNOR,
NAND, NOR, logical right and left shift
operations are tabulated in table 4.3 with output
functions. Based on ALU operations, the Rx
and Ry inputs performs the function and
generates the 32-bit ALU outputs is shown in
the table 1.
IV. RISC PROCESSOR
IMPLEMENTATION
 The RISC Processor design is programmed
on FPGA Chip. The physical verification will be
checking using Chipscope pro tool. The
Chipscope pro tool is hardware debugging
method in real time environment with FPGA
Design with the help of debugging verification

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-6, ISSUE-6, 2019

DOI: 10.21276/ijcesr.2019.6.6.12
63

IP Cores which includes ICON (Integrated
controller), and Integrated Logic analyzer (ILA)
is in figure 3.

ICON core ILA Core

RISC Processor Design
(FPGA)

Figure 3: Physical verification of RISC

Processor

The ICON is an IP core which provides the
communication path between ILA and RISC
Processor (FPGA) Design using JTAG
Boundary scan port of the targeted Artix-7
FPGA. After dumping the RISC Processor
module on FPGA, The program will be
succeeded. Use the Chipscope pro tool to
analyse the outputs on the monitor screen with
hardware control.

V. RESULTS AND ANALYSIS

The proposed RISC processor results are
described detail in the below section. The
Complete RISC processor is designed using
Verilog HDL over Xilinx ISE Platform and
simulated on Modelsim simulator and Hardware
prototyped on low cost Artix-7 FPGA.

The RISC Processor Simulation Results are a
representation shown in figure 4. Once clock
(Clk) is activated with low reset, The 8-bit pc_in
is set to zero (00-Hex value). Outputs are 16-bit
Register-X (Rx), and Register-Y (Ry) is
generated from the data memory and also
generates the 32-bit ALU outputs after one clock
cycles, Based on the ALU operations.
 The Chipscope-pro-tool analyzed results for
RISC Processor–when reset=1 is represented in
figure 5. The ILA display only the output signals
of the RISC processor. The Chipscope-pro-tool
analyzed results for RISC Processor–when
reset=0 and for addition is represented in the
figure 6. When the alu_in=0001, Rx=000F,
Ry=000F, The ALU output is 32-bit
0000_001E.

Figure 4: RISC Processor Simulation Results

Figure 5: FPGA –Chipscope-pro-tool RISC
Processor-Results – when reset=1

Figure 6: FPGA –Chipscope-pro-tool RISC

Processor-Results for Addition

 The proposed RISC Processor is compared
with similar previous RISC Processor unit [11]
concerning resource utilization on the same
selected Virtex-6 FPGA. The improvements in
slice registers around 82.03%, slice LUT's
around 4.55%, LUT-FF pairs are 66.66%, and
Input of Input-Outputs is around 55.93% is
tabulated in table 2.

Table 2: Comparison of RISC Processor with
previous [11]

Resource Utilization

Our
RISC

Processor
Previous

[11] Overhead
Number of Slice

Registers 90 501 82.03%
Number of Slice LUTs 984 1031 4.55%
Number of fully used

LUT-FF pairs 64 425 84.95%
Number of bonded

IOBs 78 177 55.93%
Number of

BUFG/BUFGCTRLs 1 3 66.66%

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-6, ISSUE-6, 2019

DOI: 10.21276/ijcesr.2019.6.6.12
64

Overall the RISC Processor and ALU Unit is
efficient and consumes less resource utilization
than previous architectures.

VI. CONCLUSION
 The cost-effective and straightforward RSIC
Processor is designed using Verilog-HDL and
implemented on the Artix-7 FPGA Platform.
The RSIC mainly contains fetching unit, data,
and instruction memory units, decoding units
and execution unit which includes ALU
operations. The Hardware architecture of RISC
Processor using ICON IP Core and ALU Unit
using VIO IP cores are designed. The simulation
results of the RISC Processor is seen using
Modelsim 6.5f. The RISC Processor using
ICON IP Core and ALU Unit using VIO IP
cores implemented on Artix-7 FPGA with
physically debugging using Chipscope pro tool
which improves the observability and
controllability respectively. The RISC Processor
is synthesized and implemented using Xilinx
ISE Tool. The RISC Processor is compared with
previous similar architecture on the same FPGA
devices with an Improvement in area overhead
of slice registers 82.03%, slice LUT’s 4.55%,
LUT-FF pairs 66.66% than previous RISC
Processor. In Future, for the same RISC
Processor, add some complex instructions to
perform the Digital signal processing operations.

REFERENCES
[1] G.M.Amdahl, G.A. Blaauw, F.P. Brooks,

"Architecture of the IBM System/360, IBM
Journal of Research and Development,
Vol.8, No.2, p.87-101, April 1964.

[2] G.A. Blaauw, F.P. Brooks, "The Structure
of System/360", IBM Systems Journal,
Vol.3, No.2, p.119- 135, 1964.

[3] R.P.Case, A.Padegs, "Architecture of the
IBM System/370", Communications of
ACM, Vol.21, No.1, p. 73-96, January
1978.

[4] G. Radin, "The 801 Minicomputer", IBM
T.J.Watson Research Center, Report RC
9125, November 11, 1981, also in
SIGARCH Computer Architecture News
10, No.2, p.39-47, March 1982.

[5] D.A. Patterson, C.H.Sequin, "A VLSI
RISC", IEEE Computer Magazine,
September 1982.

[6] Gal, Ryszard, et al. "FPGA implementation
of 8-bit RISC microcontroller for embedded
systems." Proceedings of the 18th
International Conference Mixed Design of
Integrated Circuits and Systems-MIXDES
2011. IEEE, 2011.

[7] Khazaee, Mohammad Irfan, and Shima
Hoseinzadeh. "Using Java optimized
processor as an intellectual property core
beside a RISC processor in FPGA."
Proceedings of IEEE East-West Design &
Test Symposium (EWDTS 2014). IEEE,
2014.

[8] Tomar, Amit Kumar Singh, and Rita Jain.
"20-Bit RISC and DSP System Design in an
FPGA." Computing in Science &
Engineering 16.2 (2014): 16-20.

[9] Cernazanu-Glavan, Cosmin, et al. "Direct
FPGA-based power profiling for a RISC
processor." 2015 IEEE International
Instrumentation and Measurement
Technology Conference (I2MTC)
Proceedings. IEEE, 2015.

[10] Murthy, Soumya, and Usha Verma. "FPGA
Based Implementation of Power
Optimization of 32 Bit RISC Core Using
DLX Architecture." 2015 International
Conference on Computing Communication
Control and Automation. IEEE, 2015.

[11] Kumar, Narender, and Munish Rattan.
"Implementation of embedded RISC
processor with dynamic power management
for low-power embedded system on
SOC." 2015 2nd International Conference
on Recent Advances in Engineering &
Computational Sciences (RAECS). IEEE,
2015.

[12] Jeemon, Jikku. "Pipelined 8-bit RISC
processor design using Verilog HDL on
FPGA." 2016 IEEE International
Conference on Recent Trends in
Electronics, Information & Communication
Technology (RTEICT). IEEE, 2016.

[13] Singh, Raj Prakash, Ankit K. Vashishtha,
and R. Krishna. "32 Bit re-configurable
RISC processor design and implementation
for BETA ISA with inbuilt matrix
multiplier." 2016 Sixth International
Symposium on Embedded Computing and
System Design (ISED). IEEE, 2016.

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-6, ISSUE-6, 2019

DOI: 10.21276/ijcesr.2019.6.6.12
65

[14] Dennis, Don Kurian, et al. "Single-cycle
RISC-V micro-architecture processor and its
FPGA prototype." 2017 7th International
Symposium on Embedded Computing and
System Design (ISED). IEEE, 2017.

[15] Rohit, J., and M. Raghavendra.
"Implementation of 32-bit RISC processors
without interlocked Pipelining on Artix-7
FPGA board." 2017 International

Conference on Circuits, Controls, and
Communications (CCUBE). IEEE, 2017.

[16] Venkategowada, N., et al. "Memory
Architecture Quad Core Risc Processor on
Altera FPGA De Nano Board." 2015 Fifth
International Conference on
Communication Systems and Network
Technologies. IEEE, 2015.

	INTRODUCTION
	RELATED WORKS
	PROPOSED RISC PROCESSOR
	IV. RISC PROCESSOR IMPLEMENTATION
	V. RESULTS AND ANALYSIS
	VI. CONCLUSION
	REFERENCES

