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ABSTRACT 
We describe an optimization for binary 
radix-16 (modified) Booth recoded 
multipliers to reduce the maximum height of 
the partial product array of columns to _n/4_ 
for n = 64-bit unsigned operands. This is 
contrast to the conventional maximum height 
of   (n + 1)/4. Therefore, a reduction of one 
unit in the maximum height of partial 
product is achieved. The reduction may add 
flexibility during the design of the pipelined 
multiplier to meet the required design goals, 
it may allow further optimizations of the 
partial product array reduction stage in the 
area/delay/power and/or may allow 
additional addends to be included in the 
partial product array without increasing the 
delay. The method that can be extended to 
the Booth recoded multipliers, signed 
multipliers, combined signed/unsigned 
multipliers, and other values of n. 
Keywords: Partial Product, Booth recoded 
multipliers 
 

I. INTRODUCTION 
Binary multipliers are a widely used building 
block element in the design of microprocessors 
and embedded systems, and therefore, they are 
an important target for implementation 
optimization. Current implementations of 
binary multiplication follow the steps of 1) 
recoding of the multiplier in digits in a certain 
number system 2) digit multiplication of each 
digit by the multiplicand, resulting in a certain 
number of partial products 3) reduction of the 
partial product array to two operands using 
multi operand addition techniques and 4) carry-
propagate addition of the two operands to 
obtain the final result. 

The recoding type is a key issue, since it 
determines the number of partial products. The 
usual recoding process recodes a binary operand 
into a signed-digit operand with digits in a 
minimally redundant digit set [7], [8]. 
Specifically, for radix-r (r = 2m), the binary 
operand is composed of no redundant radix-r 
digits (by just making groups of m bits), and 
these are recoded from the set {0, 1,…. r − 1} to 
these {−r/2, . . . ,−1, 0, 1, . . ., r/2} to reduce the 
complexity of digit multiplications. For n-bit 
operands, a total of n/m partial products are 
generated for two’s complement representation, 
and (n + 1)/m for unsigned representation. The 
maximum column height may determine the 
delay and complexity of the reduction tree, In 
this extra column of one bit could be 
assimilated (with just a simplified three bit 
addition) with the most significant part of the 
first partial product without increasing the 
critical path of the recoding and partial product 
generation stage.  

The result is that the partial product 
array has a maximum height of n/2. This 
reduction of one bit in the maximum height 
might be of interest for high-performance short-
bit width two’s complement multipliers (small 
n) with tight cycle time constraints that are very 
common in SIMD digital signal processing 
applications.Moreover, if n is a power of two, 
the optimization allows to use only 4-2 carry-
save adders for the reduction tree, potentially 
leading to regular layouts. These kind of 
optimizations can become particularly 
important as they may add flexibility to the 
“optimal” design of the pipelined multiplier. 

Optimal pipelining in fact, is a key issue 
in current and future multiplier (or multiplier-
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add) units: 1) the latency of the pipelined unit is 
very important, even for throughput oriented 
applications, as it impacts the energy 
consumption of the whole core, and 2) the 
placement of the pipelining flip-flops should at 
the same time minimize total power, due to the 
number of flip-flops required and the 
unbalanced signal propagation paths. The 
methods proposed in [1] and [2] were mostly 
focused on two’s complement radix-4. 

Booth multipliers, thus leaving open the 
research and extension to higher radices and 
unsigned multiplications (for unsigned integer 
arithmetic or mantissa times in a floating-point 
unit).For a radix higher than 4, it is necessary to 
generate the odd multiples (usually with 
address), a resulting in the reduction of the time 
slacks necessary to “hide” the simplified three 
bit assimilation. Unsigned multiplication may 
produce a positive carry out during recoding 
(this depends of the value of n and the radix 
used for recoding), leading to one additional 
row, increasing the maximum height of the 
partial product array by one row, not just in one 
but in several columns. For all these reasons, 
the extend techniques are presented in [1] and 
[2]. In this work, the present technique that 
allows partial product arrays of maximum 
height of n/m (with the goal of not increasing 
the delay of the partial product generation 
stage), for r >4 and unsigned multipliers. Since 
for the standard unsigned multiplier the 
maximum height is (n + 1)/m, the proposed 
method allows a reduction of one row when n is 
a multiple of m.  

This technique is general, but its impact 
(reduction of one row without increasing the 
critical path of the partial product generation 
stage) depends on the specific timing of the 
different components. Therefore, it cannot 
claim a successful result for all practical values 
of r and n and different implementation 
technologies. Thus, it concentrates on a specific 
instance: a 64-bit radix-16 Booth recoded 
unsigned multiplier implemented with a 
synthesis tool and a standard-cell library. 
Therefore by using radix-16 since it is the most 
complex case, among the practical values of the 
radix, for the design of our scheme. 

The unsigned multiplier is also more 
complex for the design of our scheme than the 

signed multiplier. By using 64 bits, since it is a 
representative large word length. The method 
proposed can be adapted easily to other 
instances (signed, combined unsigned/signed, 
radix-8 recoding, different values of n). 

 
II. METHODOLOGY 

 
Fig 1:  Block Diagram of Booth multiplier. 

A & B are the Primary inputs of a 
Multiplier and it’s given into Booth Encoding 
Block. Booth Encoding will generate the 
Encoded Data of B.  The Encoded Values are 
given into Partial Product Generator. This 
Block generated Partial Product Values Based 
on the Radix Method. 

Digital multipliers are widely used in 
arithmetic units of microprocessors, multimedia 
and digital signal processors. Many algorithms 
and architectures have been proposed to design 
high-speed and low power multipliers. This 
includes three steps  by digital circuits in a 
Normal Binary (NB) multiplication. In the first 
step, it generates the partial product. In the 
second step, all partial products are added by a 
partial product reduction tree all the partial 
products are added until two partial product 
rows remains. 

In the third step, the two partial product 
rows are added by the fast carry propagation 
adder. Two methods have been used to perform 
the second step for the partial product 
reduction. A first method uses 4-2 compressors, 
while a second method uses the redundant 
binary (RB) numbers. Both methods allows the 
partial product reduction tree to be reduced at a 
rate of 2:1. 
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The redundant binary number representation 
has been introduced to perform signed- digit 
arithmetic; the RB number has the capability 
to be represented in different ways. 

For example, in radix-16 signed digit 
recoding the digit set is {−8, −7. . . 0, . . . , 7, 
8}, so that some odd multiples of the 
multiplicand have to be generated.  
Specifically, it is required to generate ×3, ×5, 
and ×7 multiples (×6 is obtained by simple 
shift of×3). The generation of each of these 
odd multiplies requires a two term addition or 
subtraction, yielding a total of three carry-
propagate additions. 

The architecture of the basic radix-16 
Booth multiplier is shown in Fig 1. For sake of 
simplicity, but without loss of generality, 
unsigned operands with n = 64 are considered. 
Let X denote the multiplicand operand with bit 
components xi (i = 0 to − 1, with the least-
significant bit, LSB, at position 0 and with Y 
the multiplier operand and bit components yi. 

The first step is the recoding of the 
multiplier operand: groups of four bits with 
relative values in the set {0, 1, . . . . . 14, 15} 
are recoded to digits in the set{−8,−7, . . . , 0, . . 
. , 7, 8} (Minimally redundant radix- 16 digit 
set to reduce the number of multiples). This 
recoding is done with the help of a transfer digit 
ti and an interim digit wi. 

After the generation of the partial 
product bit array, the reduction (multi operand 
addition) from a maximum height of 17 (for n = 
64) to 2 is performed. The methods for multi 
operand addition are well known, with a 
common solution consisting of using 3 to 2 bit 
reduction with full adders (or 3:2 carry-save 
adders) or 4 to 2 bit reduction with 4:2 carry-
save adders. The delay and design effort of this 
stage are highly dependent on the maximum 
height of the bit array. It is recognized that 
reduction arrays of 4:2 carry-save adders may 
lead to more regular layouts. 

For instance, with a maximum height 
of 16, a total of 3 levels of 4:2 carry-save 
adders would be necessary. A maximum height 
of 17 leads to different approaches that may 
increase the delay and/or require using arrays 
of 3:2 carry-save adders interconnected to 
minimize delay [20]. After the reduction to two 

operands, a carry-propagate addition is 
performed. This addition may take advantage 
of the specific signal arrival times from the 
partial product reduction step. 

Table 2.1: Booth Encoding Table 

III. IMPLEMENTATION 

             Implementation is the process that turns 
strategies and plans into an actions in order to 
accomplish strategic objectives and goals. 
Implementing is the realization of an 
application, or execution of a plan, idea, model, 
design, specification, standard, algorithm, or 
policy. Implementation is a realization of a 
technical specification or algorithm as a 
program, software component, or other 
computer system through computer 
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programming and deployment. The following 
blocks booth encoder, partial product generator, 
adder, & ecw are implemented using Modelsim. 

A. FLOW DIAGRAM 
Booth’s multiplication examines adjacent 

pairs of bits of ‘N’-bit multiplier Y in signed 
two’s complement representation, including an 
implicit bit below the least significant bit. 
Modified Booth Encoding will generate the 
Encoded Data as PP i.e., partial product. The 
encoding process is done using chain grouping 
method which is shown in the example. The 
Encoded Values are given into Partial Product 
Generator. This Block generated Partial Product 
Values from PP0 to PP15 each of 32 bit Based 
on the Radix Method. 

 
Fig2: Flow diagram 

Partial product for multiplying two or three 
digit numbers in columns that can be easier by 
making use of standard algorithm of 
multiplication. In a large number multiplication 
grouping the number to multiply into parts, 
multiply the parts separately, and then add. A 
product formed by multiplying the multiplicand 
by one digit of the multiplier when the 
multiplier has more than one digit. Partial 
products are used as intermediate steps in 
calculating larger products. The partial product 
to solve a multiplication equation can set it up 
like a traditional long multiplication equation. 

Just like traditional long multiplication, by 
multiplying the ones digit of the second factor 
first. When more digits are used then by 
multiplying the ones first, and   then the tens.  

The outputs of partial product generator PP0 to 
PP15 are given as the input to Ripple carry 
adder, Ripple carry adder is a digital circuit that 
produces the arithmetic sum of binary number it 
can be constructed using full-adders connected 
in cascaded, with the carry output. From each 
full-adder connected to the carry input of the 
next full-adder in the chain. 

       A Booth Encoding and Partial Product 
Generation Block is implemented. Initially, 
Booth Encoding is made by Padding a Zero in 
LSB Side. Next, Grouping is Made by Radix -
16 Method. So the Multiplier has to be grouped 
as 5 bits.  Then Based on the Radix 16 Table by 
Multiply with Multiplicant to Generate Partial 
product Generation. Thus design make only 16 
partial products in this Proposed method. 

 

IV. RESULTS 
In this presented method to reduce by 

one the maximum height of the partial product 
array for 64-bit radix-16 Booth recoded 
multipliers. This reduction may allow more 
flexibility in the design of the reduction tree of 
the FIR Filter Application. We have 
implemented the Proposed Multiplier design 
into FIR Filter. Radix-16 Booth recoded 
multipliers are attractive for low power designs, 
mainly to the lower complexity and depth of the 
reduction tree, and therefore they might be very 
popular in this era of power-constrained designs 
with increasing overheads due to wiring in 
Communication Design Field. 

Simulation: 
A. Main Partial Product generation 
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Here X and Y are the inputs 

X=000000000000000000000000000000000000
0000001010101010101010101011 

Y=000000000000000000000000000000000000
0000000000111010101010101111 

Step 1: Booth Encoding  

Pad the Zero in the LSB Multiplier  

Y_N=000000000000000000000000000000000
00000000000001110101010101011110 

Step 2: Grouping 1 

11110 

Step 3: According to the Table 3.5.1 

-1 multiply with Multiplicand 

PP0=0111111111111111111111111111111111
1111111110101010101010101010101 

B. Booth Encoding  

 
 

C. The Overall View 

 

D. RTL schematic of Rdix-16 multiplier 

 

E. RTL schematic of PP block1 and Adder 
tree 

 
F.Overall Schematic view of 64-bit Booth 
algorithm 

 
V. CONCLUSION 

The Multiplier using the proposed algorithm 
improves the efficiency of area in terms of LUT 
Slices and gates,Decreasing the Delay and 
Power consumption & achieves reduction of 
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one unit in the maximum height. Here we have 
presented a method to reduce by one the 
maximum height of the partial product array for 
64-bit by describe an optimization for binary 
radix-16 (modified) Booth recoded multipliers 
to reduce the maximum height of the partial 
product columns to [n/4] for n = 64 - bit 
unsigned operands. 

Radix-8 and radix-16 Booth recoded 
multipliers are attractive for low power designs, 
mainly to the lower complexity and depth of the 
reduction tree, and therefore they might be very 
popular in this era of power-constrained designs 
with increasing overheads due to wiring. 

The booth multiplier is an efficient multiplier 
that can be used in the designing of digital 
signal processing systems. It not only performs 
multiplication of signed numbers without errors 
but also increases the speed. Memory 
consumption is minimal. 

 APPLICATIONS  
i) It has the most basic advantage in digital 
signal processing.  

ii) It is used along with multiplier-accumulator 
(MAC) that reduces the partial derivatives of 
multiplication product with ease in circuitry.  

iii) It increases the efficiency of the system by 
enhancing its speed.  

iv) Better performance in low cost at low power 
consumption. 
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