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Abstract—Thepurpose of this study is to 
reduce the number of sweeps in extracting the 
auditory evoked potential (AEP) from 
ongoing electroencephalography (EEG) to 
minimize the time of diagnosis. In noisy 
environments, when conventional ensemble 
averaging of waveforms is used, recording 
must continue for excessively long time in 
order to accurately detect the ABR signal. 
This leads to problem when subject under test 
is infants, children, or others who may not be 
cooperative. Only partial data may be 
collected and a follow on appointment must 
be arranged to complete the test adding to 
costs and inconvenience for all concerned. So 
using basic estimation techniques in 
estimating the AEP with less number of 
sweeps compared to traditional Ensemble 
average (EA) is aim of this study. Signal to 
noise ratio (SNR) is parameter used to 
compare performance of different filter 
outputs against EA.  For this purpose, basic 
estimation techniques are categorized into 
two groups. Group A includes Wiener filter 
(WF), combination of subspace method (SM) 
and wiener filter, Coherence weighted wiener 
filter (CWWF).Group B consists of standard 
adaptive filtering techniques like Least mean 
square (LMS), Recursive least square 
(RLS),one-step Kalman filter. Performance 
of above techniques is checked for both 
simulated and experimental data. In 
simulation Gaussian noise is added to known 
template AEP to create noisy sweeps. 
Keywords—Auditory Evoked Potential, 
Adaptive filtering, Subspace method, EEG 

                                 I. INTRODUCTION 

The brain electrical activity, that occurs in 
association with an external stimulus (auditory, 
visual or somatosensory), is called Evoked 
Potential (EP). In general, EPs or Event Related 
Potentials (ERPs) are not recognizable by visual 
inspection because they are buried in 
spontaneous Electroencephalogram (EEG) with 
signal-to-noise ratio (SNR) as low as −10 dB 
considering stimulus-independent background 
EEG as the noise in the measurements. The 
auditory evoked potentials (AEPs) help to 
evaluate the auditory nerve pathways from the 
ears through the brainstem. 

The AEP amplitude and frequency range is 
0.5-10μVolts, 10Hz-3000Hzrespectively [1]. 
EPs are interpreted in terms of the wave 
components such as amplitude and latencies.  
EPs have no special characteristics like ECG 
signals. Their  components  changes  depending  
on type of stimulus, psychophysiological  factors  
for  a  given  individual  . 
 

The auditory brainstem response (ABR) is a 
subclass of AEPs.  ABR is the brain wave 
activity starting in the inner ear that travels 
through the auditory nerve and to the auditory 
nuclei of the brain stem.  It does not affected by 
the mental state of the subject and has very small 
amplitudes, ranging from 0.001 to 2 µVolt. The 
typical ABR waveform is shown in Fig.1 [2]. 
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Fig.1. Typical ABR with seven general response 

categories. 
 
The ultimate goal in the field of EP research 

is to recover the response to each stimulus. 
Traditionally, a large number of repetitive 
measurements are ensemble-averaged to 
suppress the background noise and find a 
template EP signal, assuming the stimulus-
inducedchanges in the EEG are small. This 
approach is based on an additive model to 
describe the background EEG noise and an 
uncorrelated EP signal.The use of EA is 
impractical, however in cases where there are 
relatively tight constraints related to the available 
recording time or cooperativity of the subject.  
This has led to the development of the alternative 
SNR improvement methods based on the 
additive model.   

All methods in both groups are implemented 
with the following two assumptions: 1) the EP 
and background EEG noise are uncorrelated; and 
2) the background EEG noise is independent of 
the stimulus. Thus we adopt the well-known 
additive signal model to perform the linear 
filtering algorithms for auditory brain activities. 
 

II.DENOISING METHODS 
The EP signal sand the ongoing EEG 

sequence zare assumed to be additive in 
consecutive noisy measurements x.  
Mathematically, this basic assumption is 
expressed by an additive signal model as[3] 

 
ሺ݊ሻ	ݔ																								 ൌ 	ݏ 	ݖሺ݊ሻ			                       (1)                                

 
 Here, ݊ is the time index and ݅ denotes the trial 
number, where ݊	 ൌ 	1, 2. . ܰ, ݅	 ൌ 	1, 2. .  For .ܮ
empirical data, the grand average is taken as the 
template EP: 
 

			 ܺ ൌ  x	୧ሺnሻ
ெ

ୀଵ
,M ≥ 512, M >>L       (2) 

 

The aim of this study is to estimate the clear 
EP from L number of records instead of M.We 
can write the raw data in matrix form as 

 
																																		ܺ	 ൌ 	ܵ	  	ܼ																																(3) 
The signal matrix ܵ is estimated by linear 
filtering algorithms in the present work.  The 
related methods are briefly presented in the 
following sections. 
 
2. GROUP A 
2.1.1Conventional wiener filter 

Let ݔand ݀ be the ݅௧ noisy sweep and 
desired response respectively. Both of these are 
assumed to be jointly wide-sense stationary 
stochastic processes[3],[5].WF computes the 
optimum filter coefficients ݓ	by minimizing 
mean square error (MSE) as below 

 
ሺ݊ሻܬ ൌ  ሺ݊ሻ|ଶ                                   (4)݁|ܧ

    
ݓ                   ൌ ܴ

ିଵ                                   (5) 
 
Where ܴis  NN   correlation matrix of the 
݅௧noisy input sequence, ݔ and  is cross- 
correlation vector between desired response and 
input noisy sweep. Then the output of filter ݕ is 
convolution of input noisy sequence ݔ and filter 
coefficient ݓ given by 
 
ሺ݊ሻݕ ൌ ∑ wሺ݉ሻݔሺ݊ െ ݉ሻ,				݊ ൌ 1,2… .ܰெ

ୀ       
(6) 
 
Where M is order of filter, ݓ is optimum 
weight vector for  ݅௧ input noisy sweep. 
 
2.1.2 Subspace method 
 
 

 X                                                              R=UTUX 
 
Fig.2 SM Block diagram 
 
When, a small number of noisy 

observations(X) are considered as a real-valued 
noisy matrix that is summation of clear signal 
matrix(S) and uncorrelated noise matrix(Z) as 
formulated in equation (1), the dominant left 
eigenvectors of X can be chosen as linear 
independent basis vectors [3],[6]. So, the 
projected version of X can be written in the form 

 

SM 
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          R=UTUX                                            (6) 
Where the matrix U is computed from singular-
value-decomposition pairs of X such that 

 
       SVD(X) = ሾܷ	Ūሿ	ሾ1ߣ	2ߣ		. . .          ܸሿ     (7)	ሾܸ	ሿܮߣ

If we assume that the EP signal is stationary, 
then only the first left singular vector spans the 
signal subspace of interest. 
 
2.1.3 Coherence weighted wiener filter 

The accuracy of the filtered output is 
increased if the filter is able to account for those 
frequency regions with a larger amount of 
background noise. To achieve this, the power 
spectrum is computed iteratively with the 
inclusion of each additional recording into the 
ensemble. With this procedure, the effect of 
outliers or other artifacts entering into the 
ensemble is reduced. The coherence function ߛ௫௬ 
of two stationary time sequences ݔሺ݇ሻ and ݕሺ݇ሻ 
is defined as [4] 

 

௫௬ߛ 	ൌ
ௌ௫௬ሺఠሻ

ሾ௦௫௫ሺఠሻௌ௬௬ሺఠሻሿభ/మ
                      (8) 

 
Where ܵ௫௫	ሺ߱ሻ and ܵ௬௬	ሺ߱ሻ are the Autopower 
spectra of the signals ݔሺ݇ሻ and ݕሺ݇ሻ and ܵ ௫௬	ሺ߱ሻ 
is the cross spectrum between ݔሺ݇ሻand	ݕሺ݇ሻ. 
The coherences represent the degree of 
correlation between the different frequency 
components of the two sequences. In the process 
of averaging, it is important to give more 
weighting to the frequencies that are highly 
correlated than the rest. This is accomplished by 
multiplying the power spectrum of each vector in 
the ensemble with coherence spectrum estimated 
between the new time sequence and the recent 
average. Additionally, the noise spectrum is 
weighted in a complementary fashion to reduce 
the influence of noise for those frequencies with 
lesser degree of correlation. Thus the ensemble 
averaging equations for the݅௧ensemble becomes 
[4] 

 
ܵ௫̅	ሺ߱, ݅ሻ ൌ

ିଵ


ܵ௫̅ሺ߱, ݅ െ 1ሻ 

ଵ


,ሺ߱ߛ ݅ሻܵ௫ሺ߱, ݅ሻ						(9)    

 ܵ̅ሺ߱, ݅ሻ ൌ
ିଵ	


ܵ୬ഥሺ߱, ݅ሻ 

ଵ		


(1-

γ(ω,i))ܵ௫ሺ߱, ݅ሻ								(10) 
 
Where ߛሺ߱, ݅ሻ	is the spectral coherence 
computed for therecent member ܵ ௫	ሺ߱, ݅ሻ and the 
previous average .i.e. ܵ௫̅ሺ߱, ݅	 െ 1ሻ.	At each 

iteration, the filter transfer function is 
constructed using 

 

,ሺ߱	ܪ ݅ሻ	= ௌഥೣሺఠ,ሻ

ௌೣ̅ሺఠ,ሻାௌഥሺఠ,ሻ
                                 (11) 

 
The filter function is obtained as the IDFT 
of		ܪሺ߱, ݅ሻ. 
 
2.2 GROUP B: LMS, RLS and KF approach 

 LMS, RLS algorithms and KF are linear 
adaptive filtering algorithms, performed as 
introduced in literature[3],[7]. 

The filter output denoted by ݕሺ݊ሻ is 
computed by, 
 
ሺ݊ሻݕ 	ൌ ሺ݊ሻݔ 	∗ 	ሺ݊ሻ                               (12)ݓ	
Here, ݓሺ݊ሻ refers the estimated filter 
coefficients, where * denotes linear 
convolution.These are the well-known 
standardalgorithms so no description is given 
here. 

The target of the adaptive filter, namely the 
desired signal,݀ሺ݊ሻ is calculated from the 
average of L sweeps, excluding the input 
sequence of interest, as 
 

݀ሺ݊ሻ ൌ
ଵ

ିଵ
 x୨ሺnሻ



ୀଵ,ஷ	
																						(13) 

 
Thus, the estimation error is 
 
             ݁ሺ݊ሻ 	ൌ 	݀	ሺ݊ሻ 	െ	ݕ	ሺ݊ሻ                        (14) 

The error is minimized by different estimation 
techniques in aiterative manner. 
 
2.3   Performance evaluation 

In this study, we use the SNR in evaluating 
the performance of the algorithms. The input and 
output SNRs are defined as follows: 
 

Input SNR = 10log10
∑ ୗಿ
సభ ሺሻమ

 ሾୗሺ୧ሻమି௫ሺሻሿమ
ಿ
సభ

            (15) 

Output SNR=10log10 
∑ ୗಿ
సభ ሺሻమ

 ሾୗሺ୧ሻమି௬ሺሻሿమ
ಿ
సభ

										 (16) 

 
Where ݏ,  denote the signal, i.e., the ݕ and	ݔ

grand average auditory EP (or known EP in 
simulations), input noisy sequence of the 
estimator and the output of the estimator, 
respectively.To understand the effect of the 
number of sweeps for a specified input SNR, the 
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output SNR is calculated after each additional 
sweep. 
 

III. RESULTS 
3.1 Data collection 

Experimental data was recorded by placing 
three gold cup electrodes. One electrodeis 
located at front polar(Fpz of 10-20 International 
system of EEG electrode placement) position, 
other two are placed over the left and right 
earlobes of (auricular A1,A2 of 10-20 
international system of EEG electrode 
placement) subject, listening to binaurally 
delivered stimuli via earphones. The pass-band 
of the amplifier was 100–3000 Hz. During the 
experiments, the subject was sleeping on a 
bed .The stimuli were 10.1Hz tones of 100 μs 
duration and 70 dB hearing Level intensity, 
presented with an inter stimulus interval of 
100ms sec. Fig 3shows grand averaged evoked 
potential which is ensemble average of 1818 
sweeps, one noisy sweep and their respective 
spectrum. 

 
Fig.3 (a) Grand average EP, (b) Noisy actual 
sweep, (c) Grand average EP spectrum (d) 

Noisy sweep spectrum 
 

3.2 Simulation 
In simulations, ensemble average of 1818 

actual auditory single epochs collected from 
healthy volunteer is assumed to be a template EP. 
To this EP template,   normally distributed white 
noise sequences were added to create the 
simulated sweeps of specific SNR (In this study 
-10dB).Fig 4 shows simulated noisy sweep. Fig.5 
shows reference ABR signal which is used as a 
reference to compute output SNR 

 

 
Fig.4 Simulated noisy sweep 

 
Fig.5 Reference ABR signal 

 
3.3 Results for GROUP A 

Fig.6 shows output SNR changes for 
incremental number of sweeps used in 
simulation study. It is observed that SMWF 
performed superior compared to EA, SMCWWF 
and WF.SMCWWF provides marginal 
improvement over EA. Pre-filtering (subspace 
method) has increased output SNR of WF 
drastically. For 40 sweeps there is a difference of 
3dB between EA and SMWF. No SNR 
improvement observed for CWWF alone thus 
result is not shown in figure. There is a small 
increment in output SNR on addition of each 
sweep.. Fig.7 shows estimated ABR of 512 
sweeps with input SNR -10dB respectively, it is 
seen that estimated ABR of SMWF is less noisy 
compared to other methods from Group A. 

 

 
Fig.6 Output SNR for  Group A versus the  

number of simulated sweeps for input SNR=-
10dB 
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Fig.7 GROUP A estimated ABR of 512 

simulated sweeps with input SNR 
-10dB 

Fig.8 shows the output SNR versus number 
of actual sweeps. It is observed that SMWF 
performed superior to other methods. There is a 
2dB SNR difference between EA and SMWF at 
40 sweeps.  Fig 9 shows estimated ABR for 512 
actual sweeps with input       SNR -10dB.It is 
observed that estimated signal for SMWF over 
the duration from 10ms to 20ms is smoother 
compared to EA and also peaks are well defined. 
Some peaks of ABR are merged in estimated 
signal of SMCWWF. 
 

 
Fig.8 Output SNR for  Group A versus the 

number of actual sweeps for input SNR=-10dB 
 

 
Fig.9GROUP AestimatedABR of 512 actual 

sweeps with input SNR-10dB 
 

 
Fig.10 Wiener filter ouptput for 512 simulated 

sweeps with input SNR 
 -10dB (Output SNR=6.48 dB) 

 
Fig.11 SMWF output for 512 simulated sweeps 
considering one dominant Eigen vector (Output 

SNR=17.02 dB) 
 

 
Fig.12 SMWF output for 512 simulated sweeps 

considering two dominant Eigen vectors 
(Output SNR=18.7 dB) 

 

 
Fig.13 SMWF output for 512 simulated sweeps 

considering three dominant Eigen vectors 
(Output SNR=19.17 dB) 
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Fig.14 SMWF output for 512 simulated sweeps 

considering four dominant Eigen vectors 
(Output SNR=18.45 dB) 

In equation 6 and 7, when considered only 
one dominant Eigen vector (Eigen vector 
corresponding to matrix decomposition of small 
number of noisy observations) SNR is increased 
by large amount. When considered two 
dominant basis vectors output SNR increased by 
small value, whereas for number of Eigen 
vectors beyond three output SNR starts 
decreasing. Fig.15shows output SNR versus 
number of Eigen vectors.Observed thatbeyond 
three Eigen vectors output SNR is exponentially 
decaying.Fig.16shows that output SNR is 
maximum at 3. 

 
Fig.15 Output SNR v/s Number of Eigen 

vectors for 512 simulated sweeps using SMWF 

 
Fig.16Peak output SNR for three dominant 

Eigen vectors. 
 
 

3.4 Results for GROUP B 
The filter parameters are chosen for actual data 
as 

TableI Filter parameters for adaptive filters 
 

Filter 
param
eters 

μ λ 
    
Δ ݍ ݍ ݇

Value
s 

2.7
205 

0.9
95 

   
0.
1 

0.0
001 

0.
01

0.
1 

 
Where N is order of filter, μ is step size in LMS 
algorithm, λ is forgetting factor and δ is small 
positive constant to initialize input correlation 
matrix of RLS algorithm,ݍis process noise 
variance and ݍis measurement noise variance 
of Kalman filter, ݇ is value to initialize the state 
error correlation matrix of Kalman filter. 

 Fig.17 shows output SNR versus number of 
simulated sweeps with input SNR -10dB.It is 
observed that SMKF preforms better compared 
to other filters beyond 32 sweeps. LMS performs 
poorer compared to EA. But pre-filtering 
improved the SNR drastically. RLS performed 
better compared to LMS. SMRLS performance 
is in between SMLMS and SMKF. SMLMS, 
SMRLS and SMKF shows better performance 
compared to EA. There is a 4 dB difference in 
output SNR between SMKF and EA. Fig.18 
shows the estimated ABR for 512 simulated 
sweeps with input SNR -10dB respectively. 
Estimated ABR of SMKF is less noisy and peaks 
more prominent compared to others. There are 
little differences between estimated ABR of 
SMKF and SMLMS because SNR difference 
between them is less which can be noticed from 
Fig.17. There is a small increment in output SNR 
for LMS filter on addition of each sweep; hence 
output SNR is almost straight line.  
 
Fig.19 shows output SNR versus number of 
actual number of sweeps. It is observed that 
SMKF is superior compared to other methods. 
Although RLS filter looks better compared to 
EA, its SNRis almost constant (≈ 2.5 dB) on 
addition of new sweeps. Hence at 512 sweeps 
the output SNR of RLS filter is still at the same 
value. Fig.20 shows estimated ABR for 512 
sweeps with input SNR 
-10dB.Observe that SMKF output resembles 
like a template ABR. 
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Fig.17Output SNR for Group B versus the 

number of simulated sweeps. 

 
Fig.18 GROUP B estimated ABR of 512 
simulated sweeps with input SNR-10dB 

 
Fig.19 Output SNR for Group B versus the 

number of actual sweeps with input SNR=-10dB 

 
Fig.20GROUP B estimated ABR of 512 actual sweeps 

with input SNR 
-10dB 

IV. CONCLUSIONS 
The results show thatusing the SMas a pre-filter 
can remove a large amount of EEG noise. In 
addition, the characteristic of the EEG noise 
remaining on the projections renders white 

noise.The SMWF was found to be better for all 
data in Group A. 

In the Group B, SMKF is better compared to 
EA. The SMKF provides the highest 
performance in both simulation and experimental 
studies. 

The LMS filter performance depends on 1) the 
number of sweeps, 2) the step size parameter, 3) 
the filter length, and 4)the input SNR of single 
sweeps. The selection of step size parameter was 
assumed to be the crucial factor in the 
performance. To obtain a better performance 
with the LMS filtering the optimum value was 
determined empirically considering the filter 
length, input signal variance and the desired 
signal [8]. 
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